电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

江苏省江阴高级中学高中数学教案:09-直线、平面、简单几何体 (23)

江苏省江阴高级中学高中数学教案:09-直线、平面、简单几何体 (23)_第1页
1/8
江苏省江阴高级中学高中数学教案:09-直线、平面、简单几何体 (23)_第2页
2/8
江苏省江阴高级中学高中数学教案:09-直线、平面、简单几何体 (23)_第3页
3/8
平面的基本性质(二) 平面的基本性质是立体几何中演绎推理的逻辑依据.以平面的基本性质证明诸点共线、诸线共点、诸点共面是立体几何中最基础的问题,既加深了对平面基本性质的理解,又是今后解决较复杂立体几何问题的基础.一、素质教育目标(一)知识教学点掌握利用平面的基本性质证明诸点共面、诸线共面、三点共线、三线共点问题的一般方法.1.证明若干点或直线共面通常有两种思路(1)先由部分元素确定若干平面,再证明这些平面重合,如例 1 之①;(2)先由部分元素确定一个平面,再证明其余元素在这平面内,如例 1 之②.2.证明三点共线,通常先确定经过两点的直线是某两个平面的交线,再证明第三点是这两个平面的公共点,即该点分别在这两个平面内,如例 2.3.证明三线共点通常先证其中的两条直线相交于一点,然后再证第三条直线经过这一点,如练习.(二)能力训练点通过严格的推理论证,培养逻辑思维能力,发展空间想象能力.(三)德育渗透点通过对解题方法和规律的概括,了解个性与共性.特殊与一般间的关系,培养辩证唯物主义观点,又从有理有据的论证过程中培养严谨的学风.二、教学重点、难点、疑问及解决办法1.教学重点(1)证明点或线共面,三点共线或三线共点问题.(2)证明过程的书写格式与规则.2.教学难点用心 爱心 专心(1)画出符合题意的图形.(2)选择恰当的公理或推论作为论据.3.解决办法(1)教师完整板书有代表性的题目的证明过程,规范学生的证明格式.(2)利用实物,摆放成符合题意的位置.三、学生活动设计动手画图并证明.四、教学步骤(一)明确目标1.学会审题,根据题意画出图形,并写“已知、求证”.2.论据正确,论证严谨,书写规范.3.掌握基本方法:反证法和同一法,学习分类讨论.(二)整体感知立体几何教学中,对学生进行推理论证训练是发展学生逻辑思维能力的有效手段.首先应指导学生学会审题,包括根据题意画出图形,并写出已知、求证.其次,推理的依据是平面的基本性质,要引导学生确定平面.由于学生对立体几何中的推理颇不熟练,因此宜采用以启发为主,边讲边练的教学方式.教师在讲解时,应充分展开思维过程,培养学生分析空间问题的能力,在板书时,应复诵公理或推论的内容,加深对平面基本性质的理解.(三)重点、难点的学习与目标完成过程A.复习与讲评师:我们已学习了平面的基本性质,那么具备哪些条件时,直线在平面内?(生回答公理 1,教师板画图 1-20 示意....

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

江苏省江阴高级中学高中数学教案:09-直线、平面、简单几何体 (23)

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部