河北省唐山市开滦第二中学高中数学 1.3.3 函数的最值与导数学案 新人教 A 版选修 2-2 【学习目标】⒈ 理解函数的最大值和最小值的概念; ⒉ 掌握用导数求函数最值的方法和步骤【重点难点】导数求函数最值的方法和步骤【学习内容】一 、课前准备复习 1:若满足,且在的两侧的导数异号,则是的极值点,是极值,并且如果在两侧满足“左正右负”,则是的 点,是极 值;如果在两侧满足“左负右正”,则是的 点,是极 值奎屯王新敞新疆复习 2:已知函数在时取得极值,且,(1)试求常数a、b、c 的值;(2)试判断时函数有极大值还是极小值,并说明理由.二、新课导学※ 学习探究探究任务一:函数的最大(小)值 问题:观察在闭区间上的函数的图象,你能找出它的极大(小)值吗?最大值,最小值呢? 在图 1 中,在闭区间上的 最大值是 ,最小值是 ;在图 2 中,在闭区间上的极大值是 ,极小值是 ;最大值是 ,最小值是 .新知:一般地,在闭区间上连续的函数在上必有最大值与最小值. 试试: 上图的极大值点 ,为极小值点为 ;最大值为 ,最小值为 .反思:1.函数的最值 是比较整个定义域内的函数值得出的;函数的极值是比较极值点附近函数值得出的.1图 1图 22.函数在闭区间上连续,是在闭区间上有最大值与最小值的 条件3.函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,可能一个没有.※ 典型例题例1 求函数在[0,3]上的最大值与最小值.小结:求最值的步骤例 2 已知,∈(0,+∞).是否存在实数,使同时满足下列两个条件:(1)在上是减函数,在上是增函数;(2)的最小值是 1;若存在,求出,若不存在,说明理由.变式:设,函数在区间上的最大值为 1,最小值为,求函数的解析式. 2小结:本题属于逆向探究题型.解这类问题的基本方法是待定系数法,从逆向思维出发,实现由已知向未知的转化,转化过程中通过列表,直观形象,最终落脚在比较极值点与端点值大小上,从而解决问题.练 1. 求函数的最值.练 2. 已知函数在上有最小值.(1)求实数的值;(2)求在上的最大值.三、总结提升※ 学习小结设函数在上连续,在内可导,则求在上的最大值与最小值的步骤如下:⑴ 求在内的极值;⑵ 将的各极值与、比较得出函数在上的最值.课后作业1. 若函数在区间上的最大值、最小值分别为 M、N,则的值为( )A.2 B.4 C.18 D.202. 函数 ( )A.有最大值但无最小值B.有最大值...