2.3.3 平面向量的坐标运算教学目的:(1)理解平面向量的坐标的概念;(2)掌握平面向量的坐标运算;(3)会根据向量的坐标,判断向量是否共线. 教学重点:平面向量的坐标运算教学难点:向量的坐标表示的理解及运算的准确性.教学过程:一、复习引入:1.平面向量基本定理:如果1e , 2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数 λ1,λ2 使a=λ11e +λ22e(1)我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;(2)基底不惟一,关键是不共线;(3)由定理可将任一向量a在给出基底e1、e2的条件下进行分解;(4)基底给定时,分解形式惟一. λ1,λ2 是被a,1e ,2e 唯一确定的数量二、讲解新课:1.平面向量的坐标运算思考 1:已知:),(11 yxa ,),(22 yxb ,你能得出ba、ba、 a的坐标吗?设基底为i 、 j ,则ba )()(2211jyixjyixjyyixx)()(2121即ba ),(2121yyxx,同理可得ba ),(2121yyxx( 1 ) 若),(11 yxa ,),(22 yxb , 则ba ),(2121yyxx,ba ),(2121yyxx两个向量和与差的坐标分别等于这两个向量相应坐标的和与差.(2)若),(yxa 和实数 ,则),(yxa .实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.设基底为i 、 j ,则 a)(yjxi yjxi,即),(yxa 实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标。思考 2:已知),(11 yxA,),(22 yxB,怎样求BA的坐标?(3) 若),(11 yxA,),(22 yxB,则1212,yyxxABAB =OB OA =( x2, y2) (x1,y1)= (x2 x1, y2 y1)一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标.用心 爱心 专心1思考 3:你能标出坐标为(x2 x1, y2 y1)的 P 点吗?向量 AB 的坐标与以原点为始点、点 P 为终点的向量的坐标是相同的。三、讲解范例:例 1 已知a=(2,1), b=(-3,4),求a+b,a-b,3a+4b的坐标.例 2 已知平面上三点的坐标分别为 A(2, 1), B(1, 3), C(3, 4),求点 D 的坐标使这四点构成平行四边形四个顶点.解:当平行四边形为 ABCD 时,由DCAB 得 D1=(2, 2)当平行四边形为 ACDB 时,得 D2=(4, 6),当平行四边形为 DACB 时,得 D3=(6, 0)例 3...