河北省唐山市开滦第二中学高中数学 2.2.1 条件概率学案 新人教 A版选修 2-3【学习目标】通过对具体情景的分析,了解条件概率的定义。掌握一些简单的条件概率的计算【重点难点】条件概率定义的理解奎屯王新敞新疆概率计算公式的应用 【学习内容】一、复习引入三张奖券中只有一张能中奖,现分别由三名同学无放回地抽取,问最后一名同学抽到中奖奖券的概率是否比前两 名同学小.若抽到中奖奖券用“Y ”表示,没有抽到用“ ”,表示,那么三名同学的抽奖结果共有三种可能: 用 B 表示事件“最后一名同学抽到中奖奖券” , 则 B 仅包含一个基本事件 .由古典概型计算公式可知,最后一名同学抽到中奖奖券的概率为 思考:如果已经知道第一名同学没有抽到中奖奖券,那么最后一名同学抽到奖券的概率又是多少?因为已知第一名同学没有抽到中奖奖券,所以可能出现的基本事件 只有Y 和Y.而“最后一名同学抽到中奖奖券”包含的基本事件仍是Y.由古典概型计算公式可知.最后一名同学抽到中奖奖券的概率为,不妨记为 P(B|A ) ,其中 A 表示事件“第一名同学没有抽到中奖奖券”.已知第一名同学的抽奖结果为什么会影响最后一名同学抽到中奖奖券的概率呢?在这个问题中,知道第一名同学没有抽到中奖奖券,等价于知道事件 A 一定会发生,导致可能出现的基本事件必然在事件 A 中,从而影响事件 B 发生的概率 ,使得 P ( B|A )≠P ( B ) .思考:对于上面的事件 A 和事件 B,P ( B|A)与它们的概率有什么关系呢?用表示三名同学可能抽取的结果全体,则它由三个基本事件组成,即={Y, Y,Y}.既然已知事件 A 必然发生,那么只需在 A={Y, Y}的范围内考虑问题,即只有两个基本事件Y和Y.在事件 A 发生的情况下事件 B 发生,等价于事件 A 和事件 B 同时发生,即 AB 发生.而事件 AB 中仅含一个基本事件Y,因此==其中 n ( A)和 n ( AB)分别表示事件 A 和事件 AB 所包含的基本事件个数.另一方面,根据古典概型的计算公式,1其中 n()表示中包含的基本事件个数.所以,=.因此,可以通过事件 A 和事件 AB 的概率来表示 P(B| A ) .二、新课讲解1. 条件概率定义 设 A 和 B 为两个事件,P(A)>0,那么,在“A 已发生”的条件下,B 发生的条件概率(conditional probability ). 读作 A 发生的条件下 B 发生的概率.定义为 由这个定义可知,对任意两个事件 A、B,若,则有.2.条件...