交集与并集【学习目标】 1、理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.2、能使用 Venn 图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.【重点突破】 1、正确理解并集定义中的“或”(难点).2、集合的交、并运算(重点).3、重视数轴或 Venn 图在解题中的应用.【预习导学】【达标训练】4、若集体 A={参加 2012 年奥运会的运动员},集合 B={参加 2012 年奥运会的男运动员},集合 C={参加 2012 年奥运会的女运动员},则下列关系正确的是( )A、ABB、BAC、ACD、B∪C=A5、集合 A={1,2,7},集合 B={m+1,8},且 A∩B={2},则实数 m=.6、设集合 M={-1,0,1},N={≤x≤1},则 M∩N=( )A、{0}B、{0,1}C、{-1,1}D 、 { -1,0,1}7、已知A=,B=,且A∪B={-2,1,5},A∩B={-2},求 p,q,r 的值.【拓展延伸】1、已知集合 M=,P={x|-2≤x<2},则 M∪P=( )A、B、{x|-2≤x≤2}C、{x|-2≤x<2}D、{x|-2<x≤2}2、设集合 A={x|-4≤x≤2},B={x|0≤x≤4},则 A∩B 等于( )A、{x|0≤x≤2}B、{x|2≤x≤4}C、{x|0≤x≤4}D、{x|-4≤x≤4}3、已知集合 A={1,3,},B={1,m},A∪B=A,则 m=( )A、0 或B、0 或 3C、1 或D、1 或 34、设集合 A={-1,1,3},B={a+2,a2+4},A∩B={3},则实数 a 的值为.5、已知集合 A={1,2,3},B={2,m,4},A∩B={2,3},则 m=.6、已知 A={1,2,9a2-1},B={1,3},A∩B={1,3},则 a=( )A、B、C、D、