电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

辽宁省葫芦岛市第八高级中学高中数学 2.4等比数列学案 新人教A版必修5

辽宁省葫芦岛市第八高级中学高中数学 2.4等比数列学案 新人教A版必修5_第1页
1/4
辽宁省葫芦岛市第八高级中学高中数学 2.4等比数列学案 新人教A版必修5_第2页
2/4
辽宁省葫芦岛市第八高级中学高中数学 2.4等比数列学案 新人教A版必修5_第3页
3/4
辽宁省葫芦岛市第八高级中学高中数学 2.4 等比数列学案 新人教 A 版必修 5【学习目标】1 理解等比数列的概念;探索并掌握等比数列的通项公式、性质;2. 能在具体的问题情境中,发现数列的等比关系,提高数学建模能力;3. 体会等比数列与指数函数的关系. 预习案【使用说明及学法指导】认真研读教材,进行础知识梳理,并勾画课本,写上提示语,标注序号等等 。完成预习自测题目或某几个题目将预习中不能解决的问题标识出来,并写道“我的疑问”处。限时 5 分钟,独立完成。【自主学习】复习 1:等差数列的定义?复习 2:等差数列的通项公式na  ,等差数列的性质有: 观察:① 1,2,4,8,16,…②1,12 ,14 ,18 ,116 ,…③1,20,220 ,320 ,420 ,…思考以上四个数列有什么共同特征?新知:1. 等比数列定义:一般地,如果一个数列从第 项起, 一项与它的 一项的 等于 常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的 ,通常用字母 表示(q≠0),即:1nnaa  = (q≠0)2. 等比数列的通项公式:21aa ; 3211()aa qa q qa ;24311()aa qa qqa ; … … ∴ 11nnaaqa 等式成立的条件 3. 等比数列中任意两项na 与ma 的关系是:探究案【学习建议】请同学们用 5 分钟时间认真思考这些问题,并结合预习中自己的疑问开始下面的探究学习。例 1 (1) 一个等比数列的第 9 项是49 ,公比是-13 ,求它的第 1 项;(2)一个等比数列的第 2 项是 10,第 3 项是 20,求它的第 1 项与第 4 项. 小结:关于等比数列的问题首先应想到它的通项公式11nnaa q .例 2 已知数列{na }中,lg35nan ,试用定义证明数列{na }是等比数列.1我的疑问 请将预习中不能解决的问题写下来,供课堂解决。 小结:要证明一个数列是等比数列,只需证明对于任意正整数 n,1nnaa是一个不为 0 的常数就行了.※ 学习小结1. 等比数列定义;2. 等比数列的通项公式和任意两项na 与ma 的关系.※ 知识拓展在等比数列{}na中, ⑴ 当10a ,q >1 时,数列{}na是递增数列;⑵ 当10a , 01q ,数列{}na是递增数列;⑶ 当10a , 01q 时,数列{}na是递减数列;⑷ 当10a ,q >1 时,数列{}na是递减数列;⑸ 当0q 时,数列{}na是摆动数列;⑹ 当1q  时,数列{}na是常数列. 1.。训练案 完成书后习题1. 在...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

辽宁省葫芦岛市第八高级中学高中数学 2.4等比数列学案 新人教A版必修5

您可能关注的文档

文章天下+ 关注
实名认证
内容提供者

各种文档应有尽有

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部