磁场对运动电荷的作用对点训练:洛伦兹力的理解1.(多选)(2016·浙江名校联考)质量和电荷量都相等的带电粒子M和N,以不同的速率经小孔S垂直进入匀强磁场,带电粒子仅受洛伦兹力的作用,运行的半圆轨迹如图1中虚线所示,下列表述正确的是()图1A.M带负电,N带正电B.M的速率小于N的速率C.洛伦兹力对M、N不做功D.M的运行时间大于N的运行时间解析:选AC由左手定则可知,M带负电,N带正电,选项A正确;由r=可知,M的速率大于N的速率,选项B错误;洛伦兹力对M、N不做功,选项C正确;由T=可知M的运行时间等于N的运行时间,选项D错误。2.如图2所示,M、N和P是以MN为直径的半圆弧上的三点,O为半圆弧的圆心,在O点存在的垂直纸面向里运动的匀速电子束。∠MOP=60°,在M、N处各有一条长直导线垂直穿过纸面,导线中通有大小相等的恒定电流,方向如图所示,这时O点的电子受到的洛伦兹力大小为F1。若将M处长直导线移至P处,则O点的电子受到的洛伦兹力大小为F2。那么F2与F1之比为()图2A.∶1B.∶2C.1∶1D.1∶2解析:选B长直导线在M、N、P处时在O点产生的磁感应强度B大小相等,M、N处的导线在O点产生的磁感应强度方向都向下,合磁感应强度大小为B1=2B,P、N处的导线在O点产生的磁感应强度夹角为60°,合磁感应强度大小为B2=B,可得,B2∶B1=∶2,又因为F洛=qvB,所以F2∶F1=∶2,选项B正确。对点训练:带电粒子在匀强磁场中的运动3.(多选)(2015·全国卷Ⅱ)有两个匀强磁场区域Ⅰ和Ⅱ,Ⅰ中的磁感应强度是Ⅱ中的k倍。两个速率相同的电子分别在两磁场区域做圆周运动。与Ⅰ中运动的电子相比,Ⅱ中的电子()A.运动轨迹的半径是Ⅰ中的k倍B.加速度的大小是Ⅰ中的k倍C.做圆周运动的周期是Ⅰ中的k倍D.做圆周运动的角速度与Ⅰ中的相等解析:选AC两速率相同的电子在两匀强磁场中做匀速圆周运动,且Ⅰ磁场磁感应强度B1是Ⅱ磁场磁感应强度B2的k倍。由qvB=得r=∝,即Ⅱ中电子运动轨迹的半径是Ⅰ中的k倍,选项A正确。由F合=ma得a==∝B,所以=,选项B错误。由T=得T∝r,所以=k,选项C正确。由ω=得==,选项D错误。4.(2015·深圳二调)一个重力不计的带电粒子垂直进入匀强磁场,在与磁场垂直的平面内做匀速圆周运动。则下列能表示运动周期T与半径R之间的关系图像的是()解析:选D带电粒子在匀强磁场中做匀速圆周运动时,qvB=m⇒R=,由圆周运动规律,T==,可见粒子运动周期与半径无关,故D项正确。对点训练:带电粒子在匀强磁场中的多解问题5.(多选)如图3所示,垂直纸面向里的匀强磁场以MN为边界,左侧磁感应强度为B1,右侧磁感应强度为B2,B1=2B2=2T,比荷为2×106C/kg的带正电粒子从O点以v0=4×104m/s的速度垂直于MN进入右侧的磁场区域,则粒子通过距离O点4cm的磁场边界上的P点所需的时间为()图3A.×10-6sB.π×10-6sC.×10-6sD.2π×10-6s解析:选AC粒子在右侧磁场B2中做匀速圆周运动,则qv0B2=m解得R2==2cm故粒子经过半个圆周恰好到达P点,轨迹如图甲所示。则粒子运动的时间t1===×10-6s由于B1=2B2,由上面的求解可知粒子从P点射入左边的磁场后,做半径R1=R2=1cm的匀速圆周运动,经过两次周期性运动可再次经过P点,轨迹如图乙所示,则粒子运动的时间t2=T1+T2=×10-6s在以后的运动中,粒子通过MN的点会远离P点所以,粒子通过距离O点4cm的磁场边界上的P点所需的时间为×10-6s或×10-6s。故A、C正确。6.(2013·全国卷)如图4所示,虚线OL与y轴的夹角θ=60°,在此角范围内有垂直于xOy平面向外的匀强磁场,磁感应强度大小为B。一质量为m、电荷量为q(q>0)的粒子从左侧平行于x轴射入磁场,入射点为M。粒子在磁场中运动的轨道半径为R。粒子离开磁场后的运动轨迹与x轴交于P点(图中未画出),且=R。不计重力。求M点到O点的距离和粒子在磁场中运动的时间。图4解析:根据题意,带电粒子进入磁场后做圆周运动,运动轨迹交虚线OL于A点,圆心为y轴上的C点,AC与y轴的夹角为α;粒子从A点射出后,运动轨迹交x轴于P点,与x轴的夹角为β,如图所示。有qvB=m周期为T=由此得T=过A点作x、y轴的垂线,垂足分别为B、D。由图中几何关系得=Rsinα=cot60°=cotβ=+α=β...