14.1.2 幂的乘方 教学目标 1.知识与技能 理解幂的乘方的运算性质,进一步体会和巩固幂的意义;通过推理得出幂的乘方的运算性质,并且掌握这个性质. 2.过程与方法 经历一系列探索过程,发展学生的合情推理能力和有条理的表达能力,通过情境教学 ,培养学生应用能力. 3.情感、态度与价值观 培养学生合作交流意义和探索精神,让学生体会数学的应用价值. 重、难点与关键 1.重点:幂的乘方法则. 2.难点:幂的乘方法则的推导过程及灵活应用. 3.关键:要突破这个难点,在引导这个推导过程时,步步深入,层层引导,要求对性质深入地理解. 教学方法 采用“探讨、交流、合作”的教学方法,让学生在互动交流中,认识幂的乘方法则. 教学过程 一、创设情境,导入新知【情境导入】 大家知道太阳,木星和月亮的体积的大致比例吗?我可以告诉你,木星的半径是地球半径的 102倍,太阳的半径是地球半径的 103倍,假如地球的半径为 r,那么,请同学们计算一下太阳和木星的体积是多少?(球的体积公式为 V= 43 r3) 【学生活动】进行计算,并在黑板上演算.解:设地球的半径为 1,则木星的半径就是 102,因此,木星的体积为 V 木星= 43 ·(102)3=?(引入课题). 教师引导】(102)3=?利用幂的意义来推导. 【学生活动】有些同学这时无从下手. 【教师启发】请同学们思考一下 a3代表什么?(102)3呢? 【学生回答】a3=a×a×a,指 3 个 a 相乘.(102)3=102×102×102,就变成了同底数幂乘 法 运 算 , 根 据 同 底 数 幂 乘 法 运 算 法 则 , 底 数 不 变 , 指 数 相 加 ,102×102×102=102+2+2=106,因此(102)3=106. 【教师活动】下面有问题: 利用刚才的推导方法推导下面几个题目: (1)(a2)3;(2)(24)3;(3)(bn)3;(4)-(x2)2. 【学生活动】推导上面的问题,个别同学上讲台演示. 【教师推进】请同学们根据所推导的几个题目,推导一下(a)的结果是多少? 【学生活动】归纳总结并进行小组讨论,最后得出结论: (am)n=()nmmmmmm mmaaaaa 个n个= amn. 评析:通过问题的提出,再依据“问题推进”所导出的规律,利用乘方的意义和幂的乘法法则,让学生自己主动建构,获取新知:幂的乘方,底数不变,指数相乘. 二、范例学习,应用所学 【例】计算: (1)(103)5...