电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高中数学 1.4全称量词与存在量词学案 新人教版选修1-1-新人教版高二选修1-1数学学案

高中数学 1.4全称量词与存在量词学案 新人教版选修1-1-新人教版高二选修1-1数学学案_第1页
1/6
高中数学 1.4全称量词与存在量词学案 新人教版选修1-1-新人教版高二选修1-1数学学案_第2页
2/6
高中数学 1.4全称量词与存在量词学案 新人教版选修1-1-新人教版高二选修1-1数学学案_第3页
3/6
全称量词与存在量词 【学习目标】1.理解全称量词、存在量词和全称命题、特称命题的概念;2.能准确地使用全称量词和存在量词符号“” “ ”来表述相关的教学内容;3.掌握判断全称命题和特称命题的真假的基本原则和方法;4. 能正确地对含有一个量词的命题进行否定.【要点梳理】要点一、全称量词与全称命题全称量词全称量词:在指定范围内,表示整体或者全部的含义的量词称为全称量词.常见全称量词:“所有的”、“任意一个”、“每一个”、“一切”、“任给”等.通常用符号“”表示,读作“对任意”.全称命题全称命题:含有全称量词的命题,叫做全称命题.一般形式:“对中任意一个,有成立”,记作:,(其中为给定的集合,是关于的语句).要点诠释:有些全称命题在文字叙述上可能会省略了全称量词,例如:(1)“末位是 0 的整数,可以被 5 整除”;(2)“线段的垂直平分线上的点到这条线段两个端点的距离相等”;(3)“负数的平方是正数”;都是全称命题.要点二、存在量词与特称命题存在量词定义:表示个别或一部分的含义的量词称为存在量词.常见存在量词:“有一个”,“存在一个”,“至少有一个”,“有的”,“有些”等.通常用符号“ ”表示,读作“存在 ”.特称命题特称命题:含有存在量词的命题,叫做特称命题.一般形式:“存在中一个元素,有成立”,记作:,(其中为给定的集合,是关于的语句).要点诠释:(1)一个特称命题中也可以包含多个变量,例如:存在使.(2)有些特称命题也可能省略了存在量词.(3)同一个全称命题或特称命题,可以有不同的表述1要点三、 含有量词的命题的否定对含有一个量词的全称命题的否定全称命题:,的否定:,;从一般形式来看,全称命题“对 M 中任意一个 x,有 p(x)成立”,它的否定并不是简单地对结论部分 p(x)进行否定,还需对全称量词进行否定,使之成为存在量词,也即“任意”的否定为“,”.对含有一个量词的特称命题的否定 特称命题:,的否定:,;从一般形式来看,特称命题“,”,它的否定并不是简单地对结论部分进行否定,还需对存在量词进行否定,使之成为全称量词,也即“,”的否定为“,”.要点诠释:(1)全称命题的否定是特称命题,特称命题的否定是全称命题;(2)命题的否定与命题的否命题是不同的. (3)正面词:等于 、 大于 、小于、 是、 都是、 至少一个 、至多一个、 小于等于 否定词:不等于、不大于、不小于、不是、不都是、 一个也没有、 至少...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高中数学 1.4全称量词与存在量词学案 新人教版选修1-1-新人教版高二选修1-1数学学案

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部