§3.4 导数在实际生活中的应用学习目标 1.了解导数在解决实际问题中的作用.2.掌握利用导数解决简单的实际生活中的优化问题.知识点 生活中的优化问题1.生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题 . 2.利用导数解决优化问题的实质是求函数最值.3.解决优化问题的基本思路上述解决优化问题的过程是一个典型的数学建模过程.1.优化问题就是实际生活中给定条件求最大值或最小值的问题.( √ )2.生活中的优化问题都必须利用导数解决.( × )3.生活中的优化问题中,若函数只有一个极值点,则它就是最值点.( √ )类型一 几何中的最值问题例 1 请你设计一个包装盒如图所示,ABCD 是边长为 60cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得 ABCD 四个点重合于图中的点 P,正好形成一个正四棱柱形状的包装盒,E,F 在 AB 上是被切去的等腰直角三角形斜边的两个端点,设 AE=FB=xcm.(1)若广告商要求包装盒侧面积 S 最大,则 x 应取何值?(2)若广告商要求包装盒容积 V 最大,则 x 应取何值?并求出此时包装盒的高与底面边长的比值.考点 几何类型的优化问题题点 几何体体积的最值问题解 (1)由题意知,包装盒的底面边长为 xcm,高为(30-x)cm,00,得 0