2.1.1 合情推理1.理解合情推理的含义,能利用归纳推理和类比推理进行简单的推理.2.体会并认识合情推理在数学发现中的重要作用.1.推理的结构与合情推理(1)从结构上说,推理一般由两部分组成,一部分是已知的事实(或假设),叫做______;一部分是由已知推出的判断,叫做______.(2)前提为真时,结论______为真的推理,叫做合情推理.推理也可以看作是用连接词将前提和结论逻辑的连接,常用的连接词有:“因为……所以……”;“根据……可知……”;“如果……那么……”等.【做一做 1】下列说法正确的是( ).A.由合情推理得出的结论一定是正确的B.合情推理必须有前提有结论C.合情推理不能猜想D.合情推理得出的结论无法判定正误2.归纳推理(1)根据一类事物的部分对象具有某种性质,推出这类事物的所有对象都具有这种性质的推理,叫做________(简称______).(2)归纳推理的一般步骤:① 通过观察个别情况发现某些相同性质;② 从已知的相同性质中推出一个明确表述的一般性命题(猜想).归纳推理的特点:(1)归纳推理是由部分到整体、由个别到一般的推理;(2)归纳推理的前提是部分的、个别的事实,因此归纳推理的结论超出了前提所界定的范围,其前提和结论之间的联系不是必然性的,而是或然性的,所以“前提真而结论假”的情况是有可能发生的;(3)人们在进行归纳推理的时候,总是先搜集一不定期的事实材料,有了个别性的、特殊性的事实作为前提,然后才能进行归纳推理,因此归纳推理要在观察和实验的基础上进行;(4)归纳推理能够发现前的事实、获得新结论,是科学发现的重要手段。【做一做 2-1】数列 2,5,11,20,x,47,…中的 x 等于( ).A.28 B.32 C.33 D.27【做一做 2-2】已知等式 sin230°+sin230°+sin 30°·sin 30°=,sin240°+sin220°+sin 40°·sin 20°=,下面的等式中具有一般性且包含了已知等式的是( ).A.sin2α+sin2(60°-α)+sin α·sin(60°-α)=B.sin2α+sin2(60°+α)+sin α·sin(60°+α)=C.sin2(60°+α)+sin2(60°-α)+sin(60°+α)·sin(60°-α)=D.sin2α+sin2α+sin α·sin α=3.类比推理(1)根据____________之间具有某些类似(或一致)性,推测其中一类事物具有与另一类事物类似(或相同)的性质的推理,叫做________(简称______).它属于合情推理.(2)类比推理的一般步骤:① 找出两类事物之间的相似性或一致性;② 用一类事物的性质去推测另一类事物...