1.3 简单的逻辑联结词 第 1 课时 “且”与“或”学习目标 1、了解联结词“且”“或”“非”的含义2.会使用联结词“且”“或”“非”联结并改写某些数学命题,会判断含有联结词的命题的真假1.重点难点:了解联结词“且”“或”“非”的含义2.教学难点:会使用联结词“且”“或”“非”联结并改写某些数学命题,会判断含有联结词的命题的真假方 法:自主学习 合作探究 师生互动一\自主学习要在某居民楼一楼与二楼的楼梯间安一盏灯,一楼和二楼各有一个开关,使得任意一个开关都能独立控制这盏灯,你能运用“或”“且”的方法解决吗?2.新知识学习1.一般地,用联结词“且”把命题 p 和 q 联结起来,就得到一个新命题,记作__________,读作 p 且 q.2.关于逻辑联结词“且”(1)“且”的含义与日常语言中的“并且”、“及”、“和”相当,是连词“既……又……”的意思,二者须__________成立.(2) 从 如 图 所 示 串 联 开 关 电 路 上 看 , 当 两 个 开 关S1、S2__________时,灯才能亮;当两个开关 S1、S2 中一个不闭合或两个都不闭合时,灯都不会亮.(3)从集合角度理解“且”即集合运算“__________”.设命题 p:x∈A,命题 q:x∈B,则 p∧qx∈A⇔,且 x∈Bx∈(A∩B)⇔.(4)“p∧q”是这样的一个复合命题:当 p、q 都是真命题时,p∧q 是__________命题;当 p、q 两个命题中有一个命题是假命题时,p∧q 是__________命题.3.一般地,用联结词“或”把命题 p 和 q 联结起来,就得到一个新命题,记作__________,读作 p 或 q.4.关于逻辑联结词“或”(1)“或”的含义和日常语言中的“或者”相当.是“要么……要么……”的意义,二者中有__________成立即可.(2)从并联开关电路上看,当两个开关 S1、S2至少有一个闭合时,灯就亮,只有当两个开关 S1和 S2__________时,灯才不会亮.(3)从集合角度理解“或”即集合运算“__________”.设命题 p:x∈A,命题 q:x∈B,则 p∨q⇔x∈A,或 x∈B⇔x∈(A∪B).课 堂 随笔:1(4)当 p、q 两个命题有一个命题是真命题时,p∨q 是__________命题;当p、q 两个命题都是假命题时,p∨q 是__________命题.逻辑联结词“或”与自然语言中的“或者”、“可能”相当,但自然语言中的“或者”有两种用法:一是“不可兼”的“或”;二是“可兼”的“或”,而我们仅研究可兼“或”在数学中的含义.牛刀小试 1.“xy≠0”是指( )A.x≠0 且 ...