电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高中数学 第三章 导数及其应用 3.3.1 利用导数判断函数的单调性学案(含解析)新人教B版选修1-1-新人教B版高二选修1-1数学学案

高中数学 第三章 导数及其应用 3.3.1 利用导数判断函数的单调性学案(含解析)新人教B版选修1-1-新人教B版高二选修1-1数学学案_第1页
1/13
高中数学 第三章 导数及其应用 3.3.1 利用导数判断函数的单调性学案(含解析)新人教B版选修1-1-新人教B版高二选修1-1数学学案_第2页
2/13
高中数学 第三章 导数及其应用 3.3.1 利用导数判断函数的单调性学案(含解析)新人教B版选修1-1-新人教B版高二选修1-1数学学案_第3页
3/13
3.3.1 利用导数判断函数的单调性学习目标 1.理解导数与函数单调性的关系.2.掌握利用导数判断函数单调性的方法.3.能利用导数求不超过三次多项式函数的单调区间.知识点一 函数的单调性与其导数正负的关系思考 f(x)=x2在(-∞,0)上为减函数,在(0,+∞)上为增函数,那么 f′(x)在(-∞,0),(0,+∞)上的函数值的大小如何?答案 当 x∈(-∞,0)时,f′(x)<0;当 x∈(0,+∞)时,f′(x)>0.总结 (1)在区间(a,b)内函数的导数与单调性有如下关系:导数函数的单调性f′(x)>0单调递增f′(x)<0单调递减f′(x)=0常函数(2)在区间(a,b)内函数的单调性与导数有如下关系:函数的单调性导数单调递增f′(x)≥0单调递减f′(x)≤0常函数f′(x)=0特别提醒:(1)若在某区间上有有限个点使 f′(x)=0,在其余的点恒有 f′(x)>0,则 f(x)仍为增函数(减函数的情形完全类似).(2)f(x)为增函数的充要条件是对任意的 x∈(a,b)都有 f′(x)≥0 且在(a,b)内的任一非空子区间上 f′(x)不恒为 0.知识点二 函数的变化快慢与导数的关系一般地,如果一个函数在某一范围内导数的绝对值较大,那么函数在这个范围内变化得快,这时,函数的图象就比较“陡峭”(向上或向下);反之,函数的图象就“平缓”一些.1.函数 f(x)在定义域上都有 f′(x)>0,则函数 f(x)在定义域上单调递增.( × )2.函数在某一点处的导数越大,函数在该点处的切线越“陡峭”.( × )3.函数在某个区间上变化越快,函数在这个区间上导数的绝对值越大.( √ )题型一 利用导数判断函数的单调性例 1 证明:函数 f(x)=在区间上单调递减.证明 f′(x)=,又 x∈,则 cosx<0,sinx>0,∴xcosx-sinx<0,∴f′(x)<0,∴f(x)在上单调递减.反思感悟 关于利用导数证明函数单调性的问题(1)首先考虑函数的定义域,所有函数性质的研究必须保证在定义域内这个前提下进行.(2)f′(x)>(或<)0,则 f(x)单调递增(或递减);但要特别注意,f(x)单调递增(或递减),则 f′(x)≥(或≤)0.跟踪训练 1 证明:函数 f(x)=在区间(0,e)上是增函数.证明 f(x)=,∴f′(x)==.又 00,故 f(x)在区间(0,e)上是增函数.题型二 利用导数求函数的单调区间命题角度 1 不含参数的函数求单调区间例 2 求 f(x)=3x2-2lnx 的单调区间.解 f(x)=3x2-2lnx 的定义域为(0,+∞).f′(x)=6x-==,由 x>0,解 f′(x)>0,得 x>,由 x>0,解 ...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高中数学 第三章 导数及其应用 3.3.1 利用导数判断函数的单调性学案(含解析)新人教B版选修1-1-新人教B版高二选修1-1数学学案

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部