《不等式》复习小结 学案一、学习目标1.会用不等式(组)表示不等关系;2.熟悉不等式的性质,能应用不等式的性质求解“范围问题”,会用作差法比较大小;3.会解一元二次不等式,熟悉一元二次不等式、一元二次方程和二次函数的关系;4.会作二元一次不等式(组)表示的平面区域,会解简单的线性规划问题;5.明确均值不等式及其成立条件,会灵活应用均值不等式证明或求解最值。二、重点,难点不等式性质的应用,一元二次不等式的解法,用二元一次不等式(组)表示平面区域,求线性目标函数在线性约束条件下的最优解,基本不等式的应用。利用不等式加法法则及乘法法则解题,求目标函数的最优解,基本不等式的应用。三、掌握的知识点1.本章知识结构2、知识梳理(一)不等式与不等关系1、应用不等式(组)表示不等关系;不等式的主要性质:(1)对称性:abba(2)传递性:cacbba ,(3)加法法则:cbcaba;dbcadcba ,用心 爱心 专心(4)乘法法则:bcaccba0,;bcaccba0,bdacdcba0,0(5)倒数法则:baabba110,(6)乘方法则:)1*(0nNnbabann且(7)开方法则:)1*(0nNnbabann且2、应用不等式的性质比较两个实数的大小;作差法3、应用不等式性质证明(二)一元二次不等式及其解法一元二次不等式的解法一元二次不等式00022acbxaxcbxax或的解集:设相应的一元二次方程002acbxax的两根为2121xxxx且、,acb42 ,则不等式的解的各种情况如下表: 0 0 0 二次函数cbxaxy2(0a)的图象cbxaxy2cbxaxy2cbxaxy2一元二次方程的根002acbxax有两相异实根)(,2121xxxx有两相等实根abxx221 无实根的解集)0(02acbxax21xxxxx或abxx2 R用心 爱心 专心的解集)0(02acbxax21xxxx (三)线性规划1、用二元一次不等式(组)表示平面区域二元一次不等式 Ax+By+C>0 在平面直角坐标系中表示直线 Ax+By+C=0 某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线)2、二元一次不等式表示哪个平面区域的判断方法由于对在直线 Ax+By+C=0 同一侧的所有点(yx,),把它的坐标(yx,)代入 Ax+By+C,所得到实数的符号都相同,所以只需在此直线的某一侧取一特殊点(x0,y0),从 Ax0+By0+C 的正负即可判断 Ax+By+C>...