电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高中数学 第二讲 参数方程 二 圆锥曲线的参数方程互动课堂学案 新人教A版选修4-4-新人教A版高二选修4-4数学学案

高中数学 第二讲 参数方程 二 圆锥曲线的参数方程互动课堂学案 新人教A版选修4-4-新人教A版高二选修4-4数学学案_第1页
1/5
高中数学 第二讲 参数方程 二 圆锥曲线的参数方程互动课堂学案 新人教A版选修4-4-新人教A版高二选修4-4数学学案_第2页
2/5
高中数学 第二讲 参数方程 二 圆锥曲线的参数方程互动课堂学案 新人教A版选修4-4-新人教A版高二选修4-4数学学案_第3页
3/5
二 圆锥曲线的参数方程互动课堂重难突破 本课时要掌握椭圆、双曲线、抛物线的参数方程,并能应用于设圆锥曲线上的点,从而讨论最值、距离或定值等问题.难点是对参数方程中参数的几何意义或物理意义的理解.一、圆锥曲线的参数方程的实际意义圆锥曲线的参数方程不是无本之末、无源之水,而是来源于实际生活,是实际生活的抽象.例如,在军事上,在一定高度下作水平飞行的飞机将炸弹进攻投向目标,要知道炸弹离开飞机后的各个时刻所处的位置.像这样的实际问题显然炸弹所处的位置与离开飞机的时间密切相关,通过时间就可以将炸弹各个时刻所处横、纵位置给确定,从而可知其所处位置,是否能击中目标就可以及时得知,这时显然通过建立相应的参数方程比建立普通方程容易,这也更有利于实际需要.再比如在研究人造地球卫星的运行轨道时,常常也选择其参数方程的形式来予以研究.这样的例子还有很多.二、圆锥曲线的参数方程1.椭圆2222byax =1(a>0,b>0)的参数方程是sin,cosbyax(φ 为参数).要注意:(1)参数 φ 的几何意义是点(假设为 M)的离心角,不是 OM 的旋转角.(2)通常规定 φ∈[0,2π).2.双曲线2222byax =1(a>0,b>0)的参数方程是tan,secbyax (φ 为参数).同样需注意:(1)参数 φ 是点(假设为 M)所对应的圆的半径的旋转角(也称为点 M 的离心角),不是 OM 的旋转角.(2)通常规定 φ∈[0,2π),且 φ≠ 2π ,φ≠ 23π .3.抛物线 y2=2px(其中 p 表示焦点到准线的距离)的参数方程为ptyptx2,22(t 为参数).需强调,参数 t 表示抛物线上除顶点外的任意一点与原点连线的斜率的倒数,且 t∈(-∞,+∞).4.圆锥曲线的参数方程的特点.椭圆与双曲线的参数方程都与三角函数有着密切的关系.椭圆的参数方程与正弦、余弦函数有着密切的关系,这与椭圆的有界性和正弦、余弦函数的有界性有着一定的关系.而双曲线的参数方程与正割、正切函数有着密切的关系,这也与双曲线的图形分布和正割、正切函数的值域有着密切的关系.抛物线的参数方程是一、二次函数形式,同样这也与抛物线的图形分布和一、二次函数的值域相对应着.5.从课本的推导过程来看,好像一条圆锥曲线的参数方程形式的确是唯一的,但事实上,同一条圆锥曲线的参数方程形式也不唯一,例如椭圆12222 byax的参数方程可以是1tan,secbyax的形式,也可以是tan,secbyax的形式,它们二者只是形...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高中数学 第二讲 参数方程 二 圆锥曲线的参数方程互动课堂学案 新人教A版选修4-4-新人教A版高二选修4-4数学学案

文章天下+ 关注
实名认证
内容提供者

各种文档应有尽有

相关文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部