一 曲线的参数方程互动课堂重难突破 本课的重点是曲线的参数方程的概念、圆的参数方程、参数方程与普通方程的互化;难点是对参数方程的理解以及参数方程与普通方程互化的等价性.一、参数方程的概念1.曲线的参数方程的实际意义及其必要性.在日常生活和工农业生产中,很多时候都会涉及到曲线的参数方程,比如物理学中的水平抛出的物体的运动规律,要知道所抛出的物体在下落的过程中各时刻所处的位置,显然与抛出的时间有着密切的关系;再比如发射出去的炮弹,我们常常想知道所发出去的炮弹所在的位置,同样与发射出去的时间有着紧密的联系,显然像以上两种情形自然会去考虑以时间作为参数建立相应的方程,以便准确地把握所想掌握的信息.此时用参数方程来描述运动规律,常常比用普通方程更为直接简便.有些重要但较复杂的曲线,建立它们的普通方程比较困难,甚至不可能,列出的方程既复杂又不易理解.由此可见,曲线的参数方程是从实际生活中抽象出来的,并非人们的想当然,是现实生活的某个方面的反映,但又不是简单的生活再现,人们通过对曲线参数方程的研究,从而更好地利用它来为人类造福,指导工农业生产.2.一般地,在平面直角坐标系中,如果曲线上任意一点的坐标(x,y)都是某个变数 t 的函数)(),(tgytfx (※),并且对于 t 的每一个允许值,由方程组(※)所确定的点 M(x,y)都在这条曲线上,那么方程(※)就叫做这条曲线的参数方程,联系变数 x,y 的变数 t 叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.参数是联系变数 x、y 的桥梁,可以是一个有物理意义或几何意义的变数,也可以是没有明显意义的变数.3.曲线的参数方程的特点曲线的普通方程直接地反映了一条曲线上的点的横、纵坐标之间的联系,而参数方程是通过参数反映坐标变量 x、y 间的间接联系.曲线的参数方程常常是方程组的形式,任意给定一个参数的允许的取值就可得到曲线上的一个对应点,反过来对于曲线上任一个点也必然对应着其中的参数的相应的允许取值.在具体问题中,如果要求相应曲线的参数方程,首先就要注意参数的选取.一般来说,选择参数时应注意考虑以下两点:一是曲线上每一点的坐标(x,y)都能由参数取某一值唯一地确定出来;二是参数与 x、y 的相互关系比较明显,容易列出方程.参数的选取应根据具体条件来考虑.例如可以是时间,也可以是线段的长度、方位角、旋转角、动直线的斜率、倾斜角、截距等.有时为了便于列出方程...