电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高中数学《复数的引入》学案2 新人教B版选修1-2

高中数学《复数的引入》学案2 新人教B版选修1-2_第1页
1/2
高中数学《复数的引入》学案2 新人教B版选修1-2_第2页
2/2
3.1.2 数系的扩充和复数的概念-------复数的几何意义学习要求:理解复数与复平面内的点、平面向量是一一对应的,能根据复数的代数形式描出其对应的点及向量。学习重点:理解复数的几何意义,根据复数的代数形式描出其对应的点及向量。学习难点: 根据复数的代数形式描出其对应的点及向量。学习过程:一、复习准备:1. 说出下列复数的实部和虚部,哪些是实数,哪些是虚数。2.复数,当取何值时为实数、虚数、纯虚数?3. 若,试求的值,(呢?)二、学习新课:1. 复数的几何意义:① 讨论:实数可以与数轴上的点一一对应,类比实数,复数能与什么一一对应呢?(分析复数的代数形式,因为它是由实部和虚部同时确定,即有顺序的两实数,不难想到有序实数对或点的坐标) 结论:复数与平面内的点或序实数一一对应。② 复平面:以轴为实轴, 轴为虚轴建立直角坐标系,得到的平面叫复平面。复数与复平面内的点一一对应。 ③ 例 1:在复平面内描出复数分别对应的点。 (先建立直角坐标系,标注点时注意纵坐标是而不是)观察例 1 中我们所描出的点,从中我们可以得出什么结论?④ 实数都落在实轴上,纯虚数落在虚轴上,除原点外,虚轴表示纯虚数。思考:我们所学过的知识当中,与平面内的点一一对应的东西还有哪些?⑤,,注意:人们常将复数说成点或向量,规定相等的向量表示同一复数。2.应用例 2,在我们刚才例 1 中,分别画出各复数所对应的向量。练习:在复平面内画出所对应的向量。小结:复数与复平面内的点及平面向量一一对应,复数的几何意义。三、巩固与提高:1. 分别写出下列各复数所对应的点的坐标。2.3. 若复数表示的点在虚轴上,求实数的取值。变式:若表示的点在复平面的左(右)半平面,试求实数的取值。3、作业:课本 64 题 2、3 题.

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高中数学《复数的引入》学案2 新人教B版选修1-2

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部