电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高三数学一轮提能一日一讲(11月23日)VIP免费

高三数学一轮提能一日一讲(11月23日)_第1页
1/4
高三数学一轮提能一日一讲(11月23日)_第2页
2/4
高三数学一轮提能一日一讲(11月23日)_第3页
3/4
一、选择题:本大题共6小题,每小题5分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,将答案填在题后括号内.1.在一次班级聚会上,某班到会的女同学比男同学多6人,从这些同学中随机挑选一人表演节目,若选到女同学的概率为,则这班参加聚会的同学的人数为()A.12B.18C.24D.32解析设女同学有x人,则该班到会的共有(2x-6)人,所以=,得x=12,故该班参加聚会的同学有18人,故选B.答案B2.有一底面半径为1,高为2的圆柱,点O为这个圆柱底面圆的圆心,在这个圆柱内随机取一点P,则点P到点O的距离大于1的概率为()A.B.C.D.解析设点P到点O的距离小于1的概率为P1,由几何概型,则P1===,故点P到点O的距离大于1的概率P=1-=.答案B3.连续抛掷两枚正方体骰子(它们的六个面分别标有数字1,2,3,4,5,6),记所得朝上的面的点数分别为x,y,过坐标原点和点P(x,y)的直线的倾斜角为θ,则θ>60°的概率为()A.B.C.D.解析基本事件总数为6×6=36种,θ>60°的必须是=tanθ>,∴这样的基本事件有(1,2),(1,3),…,(1,6),(2,4),(2,5),(2,6),(3,6),共9种.∴概率为=.答案A4.(2013·安徽卷)若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为()A.B.C.D.解析记事件A:甲或乙被录用.从五人中录用三人,基本事件有(甲,乙,丙),(甲,乙,丁),(甲,乙,戊),(甲,丙,丁),(甲,丙,戊),(甲,丁,戊),(乙,丙,丁),(乙,丙,戊),(乙,丁,戊),(丙,丁,戊),共10种可能,而A的对立事件A仅有(丙,丁,戊)一种可能,∴A的对立事件A的概率为P(A)=,∴P(A)=1-P(A)=.选D.答案D5.若利用计算机在区间(0,1)上产生两个不等的随机数a和b,则方程x=2-有不等实数根的概率为()A.B.C.D.解析方程x=2-,即x2-2x+2b=0,原方程有不等实数根,则需满足Δ=(2)2-4×2b>0,即a>b.在如图所示的平面直角坐标系内,(a,b)的所有可能结果是边长为1的正方形(不包括边界),而事件A“方程x=2-有不等实数根”的可能结果为图中阴影部分(不包括边界).由几何概型公式可得P(A)==.答案B6.(2013·湖南卷)已知事件“在矩形ABCD的边CD上随机取一点P,使△APB的最大边是AB”发生的概率为,则=()A.B.C.D.解析矩形ABCD如图所示,在点P从D点向C点运动过程中,DP在增大,AP也在增大,而BP在逐渐减小,当P点到P1位置时,BA=BP1,当P点到P2位置时,AB=AP2,故点P在线段P1P2上时,△ABP中边AB最大,由题意可得P1P2=CD.在Rt△BCP1中,BP=CD2+BC2=AB2+AD2=AB2.即AD2=AB2,所以=,故选D.答案D二、填空题:本大题共3小题,每小题5分,共15分.将答案填在题中横线上.7.(2013·课标全国Ⅱ)从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是________.解析任取两个不同的数的情况有:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共10种,其中和为5的有2种,所以所求概率为=0.2.答案0.28.在集合A={m|关于x的方程x2+mx+m+1=0无实根}中随机的取一元素x,恰使式子lgx有意义的概率为________.解析由于Δ=m2-4<0,得-10.在数轴上表示为,故所求概率P=.答案9.(2013·浙江卷)从3男3女共6名同学中任选2名(每名同学被选中的机会均等),这2名都是女同学的概率等于________.解析设3名男同学分别为a1,a2,a3,3名女同学分别为b1,b2,b3,则从6名同学中任选2名的结果有a1a2,a1a3,a2a3,a1b1,a1b2,a1b3,a2b1,a2b2,a2b3,a3b1,a3b2,a3b3,b1b2,b1b3,b2b3,共15种,其中都是女同学的有3种,所以概率P==.答案三、解答题:本大题共3小题,共30分.解答应写出文字说明、证明过程或演算步骤.10.(本小题10分)(2012·福建卷)在等差数列{an}和等比数列{bn}中,a1=b1=1,b4=8,{an}的前10项和S10=55.(1)求an和bn;(2)现分别从{an}和{bn}的前3项中各随机抽取一项,写出相应的基本事件,并求这两项的值相等的概率.解(1)设数列{an}的公差为d,数列{bn}的公比为q.依题意得S10=10×1+d=55,b4=q3=8,解得d=1,q=2,所以an=n,bn=2n-1.(2)分别从{...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高三数学一轮提能一日一讲(11月23日)

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部