三角形经典测试题及答案一、选择题1.如图,四边形ABCD和EFGH都是正方形,点EH,在ADCD,边上,点FG,在对角线AC上,若6AB,则EFGH的面积是()A.6B.8C.9D.12【答案】B【解析】【分析】根据正方形的性质得到∠DAC=∠ACD=45°,由四边形EFGH是正方形,推出△AEF与△DFH是等腰直角三角形,于是得到DE=22EH=22EF,EF=22AE,即可得到结论.【详解】解: 在正方形ABCD中,∠D=90°,AD=CD=AB,∴∠DAC=∠DCA=45°, 四边形EFGH为正方形,∴EH=EF,∠AFE=∠FEH=90°,∴∠AEF=∠DEH=45°,∴AF=EF,DE=DH, 在Rt△AEF中,AF2+EF2=AE2,∴AF=EF=22AE,同理可得:DH=DE=22EH又 EH=EF,∴DE=22EF=22×22AE=12AE, AD=AB=6,∴DE=2,AE=4,∴EH=2DE=22,∴EFGH的面积为EH2=(22)2=8,故选:B.【点睛】本题考查了正方形的性质,等腰直角三角形的判定及性质以及勾股定理的应用,熟练掌握图形的性质及勾股定理是解决本题的关键.2.长度分别为2,7,x的三条线段能组成一个三角形,的值可以是()A.4B.5C.6D.9【答案】C【解析】【分析】根据三角形的三边关系可判断x的取值范围,进而可得答案.【详解】解:由三角形三边关系定理得7-2<x<7+2,即5<x<9.因此,本题的第三边应满足5<x<9,把各项代入不等式符合的即为答案.4,5,9都不符合不等式5<x<9,只有6符合不等式,故选C.【点睛】本题考查的是三角形的三边关系,属于基础题型,掌握三角形的三边关系是解题的关键.3.如图,在矩形ABCD中,3,4,ABBC将其折叠使AB落在对角线AC上,得到折痕,AE那么BE的长度为()A.1B.2C.32D.85【答案】C【解析】【分析】由勾股定理求出AC的长度,由折叠的性质,AF=AB=3,则CF=2,设BE=EF=x,则CE=4x,利用勾股定理,即可求出x的值,得到BE的长度.【详解】解:在矩形ABCD中,3,4ABBC,∴∠B=90°,∴22345AC,由折叠的性质,得AF=AB=3,BE=EF,∴CF=5-3=2,在Rt△CEF中,设BE=EF=x,则CE=4x,由勾股定理,得:2222(4)xx,解得:32x;∴32BE.故选:C.【点睛】本题考查了矩形的折叠问题,矩形的性质,折叠的性质,以及勾股定理的应用,解题的关键是熟练掌握所学的性质,利用勾股定理正确求出BE的长度.4.等腰三角形两边长分别是5cm和11cm,则这个三角形的周长为()A.16cmB.21cm或27cmC.21cmD.27cm【答案】D【解析】【分析】分两种情况讨论:当5是腰时或当11是腰时,利用三角形的三边关系进行分析求解即可.【详解】解:当5是腰时,则5+5<11,不能组成三角形,应舍去;当11是腰时,5+11>11,能组成三角形,则三角形的周长是5+11×2=27cm.故选D.【点睛】本题主要考查了等腰三角形的性质,三角形三边关系,掌握等腰三角形的性质,三角形三边关系是解题的关键.5.如图,已知△ABD和△ACD关于直线AD对称;在射线AD上取点E,连接BE,CE,如图:在射线AD上取点F连接BF,CF,如图,依此规律,第n个图形中全等三角形的对数是()A.nB.2n-1C.(1)2nnD.3(n+1)【答案】C【解析】【分析】根据条件可得图1中△ABD≌△ACD有1对三角形全等;图2中可证出△ABD≌△ACD,△BDE≌△CDE,△ABE≌△ACE有3对全等三角形;图3中有6对全等三角形,根据数据可分析出第n个图形中全等三角形的对数.【详解】 AD是∠BAC的平分线,∴∠BAD=∠CAD.在△ABD与△ACD中,AB=AC,∠BAD=∠CAD,AD=AD,∴△ABD≌△ACD.∴图1中有1对三角形全等;同理图2中,△ABE≌△ACE,∴BE=EC, △ABD≌△ACD.∴BD=CD,又DE=DE,∴△BDE≌△CDE,∴图2中有3对三角形全等;同理:图3中有6对三角形全等;由此发现:第n个图形中全等三角形的对数是12nn.故选C.【点睛】考查全等三角形的判定,找出数字的变化规律是解题的关键.6.如图,在ABC中,AB的垂直平分线交BC于D,AC的中垂线交BC于E,20DAEo,则BAC的度数为()A.70oB.80oC.90oD.100o【答案】D【解析】【分析】根据线段垂直平分线的性质得到DA=DB,EA=EC,在由等边对等角,根据三角形内角和定理求解.【详解】如图所示: DM是线段AB的垂直平分线,∴DA=DB,BDAB,同理可得:CEAC, 20DAEo,180BDABCEACDAE,∴80DABEAC∴100BAC故选:D【点睛】本题考...