初中数学三角形难题汇编及答案一、选择题1.如图,在ABC中,ABAC,分别是以点A,点B为圆心,以大于12AB长为半径画弧,两弧交点的连线交AC于点D,交AB于点E,连接BD,若40A,则DBC()A.40B.30C.20D.10【答案】B【解析】【分析】根据题意,DE是AB的垂直平分线,则AD=BD,40ABDA∠∠,又AB=AC,则∠ABC=70°,即可求出DBC.【详解】解:根据题意可知,DE是线段AB的垂直平分线,∴AD=BD,∴40ABDA∠∠, ABAC,∴1(18040)702ABC,∴704030DBC;故选:B.【点睛】本题考查了垂直平分线的性质,等腰三角形的性质,以及三角形的内角和,解题的关键是熟练掌握所学的性质,正确求出DBC的度数.2.如图,在矩形ABCD中,3,4,ABBC将其折叠使AB落在对角线AC上,得到折痕,AE那么BE的长度为()A.1B.2C.32D.85【答案】C【解析】【分析】由勾股定理求出AC的长度,由折叠的性质,AF=AB=3,则CF=2,设BE=EF=x,则CE=4x,利用勾股定理,即可求出x的值,得到BE的长度.【详解】解:在矩形ABCD中,3,4ABBC,∴∠B=90°,∴22345AC,由折叠的性质,得AF=AB=3,BE=EF,∴CF=5-3=2,在Rt△CEF中,设BE=EF=x,则CE=4x,由勾股定理,得:2222(4)xx,解得:32x;∴32BE.故选:C.【点睛】本题考查了矩形的折叠问题,矩形的性质,折叠的性质,以及勾股定理的应用,解题的关键是熟练掌握所学的性质,利用勾股定理正确求出BE的长度.3.等腰三角形两边长分别是5cm和11cm,则这个三角形的周长为()A.16cmB.21cm或27cmC.21cmD.27cm【答案】D【解析】【分析】分两种情况讨论:当5是腰时或当11是腰时,利用三角形的三边关系进行分析求解即可.【详解】解:当5是腰时,则5+5<11,不能组成三角形,应舍去;当11是腰时,5+11>11,能组成三角形,则三角形的周长是5+11×2=27cm.故选D.【点睛】本题主要考查了等腰三角形的性质,三角形三边关系,掌握等腰三角形的性质,三角形三边关系是解题的关键.4.下列长度的三条线段能组成三角形的是()A.2,2,5B.1,3,3C.3,4,8D.4,5,6【答案】D【解析】【分析】三角形的任何一边大于其他两边之差,小于两边之和,满足此关系的可组成三角形,其实只要最小两边的和大于最大边就可判断前面的三边关系成立.【详解】根据三角形三边关系可知,三角形两边之和大于第三边.A、2+2=4<5,此选项错误;B、1+3<3,此选项错误;C、3+4<8,此选项错误;D、4+5=9>6,能组成三角形,此选项正确.故选:D.【点睛】此题考查三角形三边关系,解题关键在于掌握三角形两边之和大于第三边.即:两条较短的边的和小于最长的边,只要满足这一条就是满足三边关系.5.下列命题是假命题的是()A.三角形的外心到三角形的三个顶点的距离相等B.如果等腰三角形的两边长分别是5和6,那么这个等腰三角形的周长为16C.将一次函数y=3x-1的图象向上平移3个单位,所得直线不经过第四象限D.若关于x的一元一次不等式组0213xmx无解,则m的取值范围是1m£【答案】B【解析】【分析】利用三角形外心的性质、等腰三角形的性质和三角形三边关系定理、一次函数图象的平移规律、解一元一次不等式组分别判断后即可确定正确的选项.【详解】A.三角形的外心到三角形的三个顶点的距离相等,正确,是真命题;B.如果等腰三角形的两边长分别是5和6,那么这个等腰三角形的周长为16或17,错误,是假命题;C.将一次函数y=3x-1的图象向上平移3个单位,所得直线不经过第四象限,正确,是真命题;D.若关于x的一元一次不等式组0213xmx无解,则m的取值范围是1m£,正确,是真命题;故答案为:B【点睛】本题考查了命题与定理的知识,解题的关键是了解三角形外心的性质、等腰三角形的性质和三角形三边关系定理、一次函数图象的平移规律、解一元一次不等式组.6.如图,在菱形ABCD中,AB=10,两条对角线相交于点O,若OB=6,则菱形面积是()A.60B.48C.24D.96【答案】D【解析】【分析】由菱形的性质可得AC⊥BD,AO=CO,BO=DO=6,由勾股定理可求AO的长,即可求解.【详解】解: 四边形ABCD是菱形,∴AC⊥BD,AO=CO,BO=DO=6,∴AO=22100368ABOB,∴AC=16,BD=12,∴菱形面积=12162=96,故选:D.【点睛】...