电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

2024-2024年小学奥数《等分图形》经典专题点拨教案VIP免费

2024-2024年小学奥数《等分图形》经典专题点拨教案_第1页
1/4
2024-2024年小学奥数《等分图形》经典专题点拨教案_第2页
2/4
2024-2024年小学奥数《等分图形》经典专题点拨教案_第3页
3/4
2024-2024年学校奥数《等分图形》经典专题点拨教案【均分整体】有些几何问题,只要把大图形均分为若干个小图形,就能找到问题的答案。例如,下面两图中的正方形分别内接于同一个等腰直角三角形(内接指四个顶点全在三角形的边上)。已知左图(图4.11)中正方形面积为72平方厘米,求右图(4.12)中正方形的面积。由于左右两个三角形完全相同,我们不妨把这两个图形进行等分,看看这两个正方形分别与同一个等腰直角三角形有什么样的关系。等分后的情况见图4.13和图4.14。积是图4.12的正方形面积是【均分局部】有些几何问题,整体的均分不太方便,或不能够办到,这时可以考虑把它的局部去均分,然后从整体上去观察,往往也能使问题获得解决。例如图4.15,在正方形ABCD中,画有甲、乙、丙三个小正方形。问:乙、丙面积之和与甲相比,哪一个大些?大家由前面的“均分整体”已经知道,像甲、乙这样的两个正方形,面积不是相等的。如图4.16,经过等分,正方形甲的面积等于△ABC面积的一半;正方形丙的面积等于△EDF的一半,正方形乙的面积等于梯形ACFE面积的一半。这样,一个大正方形ABCD,就划分成了三个局部:等腰直角△ABC;等腰梯形ACFE;等腰直角△EDF。其中甲、乙、丙的面积分别为各自所在图形的一半,而△EDF的面积加梯形ACFE的面积等于△ADC的面积,即等于△ABC的面积。所以,乙、丙面积之和等于甲的面积。附送:2024-2024年学校奥数《等积规律》经典专题点拨教案【三角形等积的基本规律】假如两个三角形的底相等,高也相等,那么,这两个三角形的面积相等。例如,在图1.32中,D是BC的中点(即BD=DC),则△ABD与△ACD的面积相等。(等底同高)【三角形等积规律推论】由三角形等积这一基本规律,可以推出下面几个结论。结论1假如两个三角形有公共的底边,且这底边所对的顶点所在直线,与这底边平行,则这两个三角形面积相等。例如,在图1.33中,A1A2的连线与BC平行,则△A1BC与△A2BC的面积相等。结论2在两个三角形中,若相等的底在同一直线上,底所对的顶点在与底平行的另一同一直线上,则这两个三角形的面积相等。例如图1.34中的△A1B1C1与△A2B2C2,它们的底B1C1=B2C2,并且底同在直线B1C2上,顶点A1、A2的连线A1A2,与B1C2平行,那么△A1B1C1与△A2B2C2的面积便是相等的。结论3假如一个三角形的一边被分成了n等分,并把这些等分点与顶点连结,那么这个三角形就被分成了n+1个等积的三角形。例如图1.35中,BC被点D1、D2、D3、D4、D5分成了六等分,则△ABC的面积也就被AD1、AD2、AD3、AD4、AD5也分成了六等分。即△ABD1、△AD1D2、△AD2D3、△AD3D4、△AD4D5、△结论4假如两个三角形的高相等,其中一个三角形的底是另一个三角形底的几倍,那么这个三角形的面积也是另一个三角形面积的几倍。例如,在图1.36中,△ABC的高AD,和△A払扖挼母逜扗捪嗟龋珺C=3B扖挘敲础鰽BC的面积,便是△A払扖挼拿婊—3倍。

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

2024-2024年小学奥数《等分图形》经典专题点拨教案

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部