12.2三角形全等的判定第1课时用“SSS”判定三角形全等1.理解和掌握全等三角形判定方法1-“SSS”.2.体会尺规作图.3.掌握简单的证明格式.阅读教材P35~37,完成预习内容.知识探究三边分别相等的两个三角形________(可以简写成“边边边”或“________”).自学反馈1.在△ABC、△DEF中,若AB=DE,BC=EF,AC=DF,则____________.2.已知AB=3,BC=4,CA=6,EF=3,FG=4,要使△ABC≌△EFG,则EG=________.3.如图,通常凳子腿活动后,木工师傅会在凳腿上斜钉一根木条,这是利用了三角形的________.两个三角形三角、三边六个元素中,满足一个或两个元素相等是无法判定全等的,我们这节课探讨的是三个元素相等中三边对应相等的情况.4.如图,是用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB的依据是________.可通过添加辅助线构造全等三角形加以证明.活动1小组讨论例1如图,AB=AD,CB=CD,求证:△ABC≌△ADC.证明:在△ABC与△ADC中,∵AB=AD,CB=CD,AC=AC,∴△ABC≌△ADC(SSS).例2如图,C是AB的中点,AD=CE,CD=BE.求证:△ACD≌△CBE.证明:∵C是AB的中点,∴AC=CB.在△ACD与△CBE中,∵AD=CE,CD=BE,AC=CB,∴△ACD≌△CBE(SSS).注意运用SSS证三角形全等时的证明格式;在证明过程中善于挖掘“公共边”这个隐含条件.例3如图,AB=AD,DC=BC,∠B与∠D相等吗?为什么?解:结论:∠B=∠D.理由:连接AC,在△ADC与△ABC中,∵AD=AB,AC=AC,DC=BC,∴△ADC≌△ABC(SSS).∴∠B=∠D.要证∠B与∠D相等,可证这两个角所在的三角形全等,现有的条件并不满足,可以考虑添加辅助线证明.活动2跟踪训练1.如图,AD=BC,AC=BD.求证:(1)∠DAB=∠CBA;(2)∠ACD=∠BDC.2.如图,已知点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF.求证:(1)△ABC≌△DEF;(2)AB∥DE.1.三角形全等的判定与性质的应用经常交替使用.2.注意线段和在证线段相等中的应用.活动3课堂小结1.本节课我们探索得到了三角形全等的条件,发现了证明三角形全等的一个规律SSS.并利用它可以证明简单的三角形全等问题.2.添加辅助线构造公共边,可以为证明两个三角形全等提供条件,证明两个三角形全等是证明线段相等或角相等的重要方法.【预习导学】知识探究全等SSS自学反馈1.△ABC≌△DEF2.63.稳定性4.SSS【合作探究】活动2跟踪训练1.证明:(1)在△DAB与△CBA中,∵AD=BC,DB=CA,AB=BA,∴△DAB≌△CBA.∴∠DAB=∠CBA.(2)同理可证得△DAC≌△CBD,∴∠ACD=∠BDC.2.证明:(1)∵BE=CF,∴BE+CE=CF+EC.∴BC=FE.在△ABC与△DEF中,∵AB=DE,AC=DF,BC=EF,∴△ABC≌△DEF.(2)∵△ABC≌△DEF(已证),∴∠B=∠DEF.∴AB∥DE.