4.3用频率估计概率1.当事件的试验结果不是有限个或各种可能结果发生的可能性不相等时,要用频率来估计概率.2.通过试验,理解当试验次数较大时试验频率稳定于理论概率,发展概率观念.3.体会频率与概率的联系与区别,发展学生根据频率的集中趋势估计概率的能力.自学指导阅读教材第134至138页,完成下列问题.自学反馈1.在“抛一枚均匀硬币”的实验中,如果现在没有硬币,则下面各个试验中哪个不能代替(C)A.两张扑克,“黑桃”代替“正面”,“红桃”代替“反面”B.两个形状大小完全相同,但一红一白的两个乒乓球C.扔一枚图钉D.人数均等的男生、女生,以抽签的方式随机抽取一人2.从生产的一批螺钉中抽取1000个进行质量检查,结果发现有5个是次品,那么从中任取1个是次品概率约为(B)A.B.C.D.3.含有4种花色的36张扑克牌的牌面都朝下,每次抽出一张记下花色后再原样放回,洗匀牌后再抽.不断重复上述过程,记录抽到红心的频率为25%,那么其中扑克牌花色是红心的大约有9张.活动1小组讨论例1某商场设立了一个可以自由转动的转盘,并规定:顾客购物10元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是活动进行中的一组统计数据:(1)计算并完成表格:转动转盘的次数n1001502005008001000落在“铅笔”的次数m68111136345564701落在“铅笔”的频率0.680.740.680.690.7050.701(2)请估计,当n很大时,落在“铅笔”的频率将会接近多少?解:0.7(3)假如你去转动该转盘一次,你获得铅笔的概率约是多少?解:0.7例2在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:摸球的次数n1001502005008001000摸到白球的次数m5896116295484601摸到白球的频0.580.640.50.590.600.601率85(1)请估计,当n很大时,摸到白球的频率将会接近0.6;(2)假如你去摸一次,你摸到白球的概率是0.6,摸到黑球的概率是0.4;(3)试估算口袋中黑、白两种颜色的球各有多少只?解:8,12.频率与概率有什么区别与联系?(1)频率和概率都是随机事件可能性大小的定量的刻画,但频率与试验次数及具体的试验有关,因此频率具有随机性.(2)概率是刻画随机事件发生可能性大小的数值,是一个固定的量,不具有随机性.(3)频率是概率的近似值,概率是频率的稳定值,它是频率的科学抽象,当试验次数越来越多时,频率围绕概率摆动的平均幅度会越来越小,即频率靠近概率.活动2跟踪训练1.一个密闭不透明的盒子里有若干个黑球,在不允许将球倒出来的情况下,为估计黑球的个数,小刚向其中放入8个白球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球400次,其中88次摸到白球,估计盒中大约有黑球(A)A.28个B.30个C.36个D.42个2.一个口袋中有12个白球和若干个黑球,在不允许将球倒出来数的前提下,小亮为估计口袋中黑球的个数,采用了如下的方法:每次先从口袋中摸出10个球,求出其中白球数与10的比值,再把球放回口袋中摇匀.不断重复上述过程5次,得到的白球数与10的比值分别为:0.4,0.1,0.2,0.1,0.2.根据上述数据,小亮可估计口袋中大约有48个黑球.3.小颖有20张大小相同的卡片,上面写有1~20这20个数字,她把卡片放在一个盒子中搅匀,每次从盒中抽出一张卡片,记录结果如下:实验次数204060801001201401601802003的倍数的频数51317263236394955613的倍数的频率(1)完成上表;(2)频率随着实验次数的增加,稳定于什么值左右?(3)从试验数据看,从盒中摸出一张卡片是3的倍数的概率估计是多少?(4)根据推理计算可知,从盒中摸出一张卡片是3的倍数的概率应该是多少?解:(1)0.250.3250.2830.3250.320.30.2790.3060.3060.305;(2)0.3;(3)0.3;(4)0.3.当试验次数较大时,试验频率稳定于理论概率.活动3课堂小结1.当事件的试验结果不是有限个或结果发生的可能性不相等时,要用频率来估计概率.2.模拟实验在求一个实际问题中的作用.3.怎样对一个简单的问题提出一种可行的模拟实验.