电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

福建省泉州市泉港三川中学九年级数学上册《24.3 相似三角形的应用》教案 华东师大版VIP免费

福建省泉州市泉港三川中学九年级数学上册《24.3 相似三角形的应用》教案 华东师大版_第1页
1/3
福建省泉州市泉港三川中学九年级数学上册《24.3 相似三角形的应用》教案 华东师大版_第2页
2/3
福建省泉州市泉港三川中学九年级数学上册《24.3 相似三角形的应用》教案 华东师大版_第3页
3/3
福建省泉州市泉港三川中学九年级数学上册《24.3相似三角形的应用》教案华东师大版教学目标会应用相似三角形的有关性质,测量简单的物体的高度或宽度。教学过程一、复习1、相似三角形有哪些性质?2.如图,B、C、E、F是在同一直线上,AB⊥BF,DE⊥BF,AC∥DF,(1)△DEF与△ABC相似吗?为什么?(2)若DE=1,EF=2,BC=10,那么AB等于多少?二、例题讲解第二题我们根据两个三角形相似,对应边成比例,列出比例式计算出AB的长。人们从很早开始,就懂得应用这种方法来计算那些不能直接测量的物体的高度或宽度。例1:古代的数学家想出了一种测量金字塔高度的方法:为了测量金字塔的高度OB,先竖一根已知长度的木棒O′B′,比较棒子的影长A′B′与金字塔的影长AB,即可近似算出金字塔的高度OB,如果O′B′=l,A′B′=2,AB=274,求金字塔的高度OB。这实际上与上述问题是一样的。例2.我军一小分队到达某河岸,为了测量河宽,只用简单的工具,就可以很快计算河的宽度,在河对岸选定一个目标作为点A,再在河的这一岸上选点B和C,使AB⊥BC,然后选点E,使EC⊥BC,用眼睛测视确定BC和AE的交点D,此时如果测得BD=120米,DC=60米,EC=50米,就能算出两岸间的大致距离AB。例2:如图24.3.13,为了估算河的宽度,我们可以在河对岸选定一个目标作为点A,再在河的这一边选定点B和C,使AB⊥BC,然后,再选点E,使EC⊥BC,用视线确定BC和AE的交点D.此时如果测得BD=120米,DC=60米,EC=50米,求两岸间的大致距离AB.解∵∠ADB=∠EDC,∠ABC=∠ECD=90°,∴△ABD∽△ECD(如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似),∴,解得(米).答:两岸间的大致距离为100米.这些例题向我们提供了一些利用相似三角形进行测量的方法.例3:如图24.3.14,已知:D、E是△ABC的边AB、AC上的点,且∠ADE=∠C.求证:AD·AB=AE·AC.证明∵∠ADE=∠C,∠A=∠A,∴△ADE∽△ACB(如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似).∴,∴AD·AB=AE·AC.三、练习1.到操场上用例1的方法测量旗杆的高,并与同伙交流看看计算结果是否大致上一样。2.在同一时刻物体的高度与它的影长成正比,在某一时刻,有人测得高为1.8米的竹竿的影长为3米,此时某高楼影长为60米,那么高楼的高度为多少米?四、小结本节课学习应用相似三角形的性质,测量计算物体的高度,在应用时要分清转到数学上是哪两个三角形会相似,它们对应的边是哪一边,利用比例的性质求证答案。

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

福建省泉州市泉港三川中学九年级数学上册《24.3 相似三角形的应用》教案 华东师大版

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部