第1页共25页编号:时间:2021年x月x日书山有路勤为径,学海无涯苦作舟页码:第1页共25页2011数学建模扩散模型承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。我们知道,抄袭别人的成果是违反竞赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。我们参赛选择的题号是(从D/E/F中选择一项填写):我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名):1.2.3.指导教师或指导教师组负责人(打印并签名):日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):第2页共25页第1页共25页编号:时间:2021年x月x日书山有路勤为径,学海无涯苦作舟页码:第2页共25页2011重庆邮电大学数学建模第二次模拟编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):评阅人评分备第3页共25页第2页共25页编号:时间:2021年x月x日书山有路勤为径,学海无涯苦作舟页码:第3页共25页注全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):放射性气体扩散浓度预估模型【摘要】本文是以日本地震引起的福岛核电站的核泄漏为背景,并以给出的数据为基础,研究某一假设核电站的核泄漏问题。我们通过收集相关的资料,并结合题目给出的数据,建立了高斯模型、连续点源高斯扩散模型解决了题目提出的四个问题。针对问题一:考虑到泄漏源是连续、均匀和稳定的,我们运用散度、梯度、流量等数学概念,通过“泄漏放射性物质质量守恒”、“气体泄漏连续性定理”、Guass公式及积分中值定理得到了无界区域的抛物线型偏微分方程,然第4页共25页第3页共25页编号:时间:2021年x月x日书山有路勤为径,学海无涯苦作舟页码:第4页共25页后再通过电源函数解出空间任意一点的放射性物质浓度的表达式,把此表达式定为模型一的前身。鉴于放射性物质的扩散受到诸多因素的影响,如:泄漏源的实际高度、地面反射等。我们以泄漏口为坐标原点建立三维坐标系,通过“像源法”处理地面反射对放射性物质浓度的影响,并由此对模型一的前身进行修正完善,得到模型一:高斯模型,即放射性物质浓度的预测模型。最后我们模拟了放射性物质无风扩散仿真图。针对问题二:当风速为km/s时,我们根据放射性核素云团在大气中迁移和扩散的数值计算的基本方法和步骤,并以泄漏点源在地面的投影点为坐标原点,以风向方向为轴,铅直方向为轴,与轴水平面垂直方向为轴建立三维坐标系,地面的反射作用同样利用“像源法”进行处理,得到连续点源高斯扩散模型。考虑到地面反射、烟云抬升、放射性物质自身的沉降及雨水的吸附等对浓度的影响,我们对连续点源高斯扩散模型进行了修正,建立了修正的连续点源高斯扩散模型。最后利用大气稳定度确定了扩散参数,进而求解了模型。针对问题三:经分析,问题三的提出是以问题二为基础的,模型三的建立只需要将模型二加以调整即可。我们以风速方向为轴正方向,将风速与放射性物质的扩散速度进行矢量运算,此问题则转化为求和两点处的放射性物质浓度,由此建立模型三,即上风和下风公里处放射性物质浓度浓度的预测模型。针对问题四:首先,我们通过网络收集了相关数据,然后,我们结合模型二、模型三对数据进行整理代入,算出了日本福岛核电站泄漏的放射性物质扩散到中国东海岸和美国西海岸的浓度分别为、。关键词:高斯模型连续点源高斯扩散模型核泄漏一问题的重述1.1问题背景目前,核电站的发展能带来巨大的经济效益和社会效益,但核电站一旦发生核泄漏,将会给人们的生命健康和周边环境带来巨大的危害性影响。2011年3月日本的福岛核电站的放射性气体的核泄漏事件更让我们关注放射性气体泄漏时的浓度问题。因此,正确的测...