第2课时参数方程1.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式.一般地,可以通过消去参数从参数方程得到普通方程.(2)如果知道变数x,y中的一个与参数t的关系,例如x=f(t),把它代入普通方程,求出另一个变数与参数的关系y=g(t),那么就是曲线的参数方程.2.常见曲线的参数方程和普通方程点的轨迹普通方程参数方程直线y-y0=tanα(x-x0)(t为参数)圆x2+y2=r2(θ为参数)椭圆+=1(a>b>0)(φ为参数)双曲线-=1,(a>0,b>0)(φ为参数)抛物线y2=2px(p>0)(t为参数)1.直线l的参数方程为(t为参数),求直线l的斜率.解将直线l的参数方程化为普通方程为y-2=-3(x-1),因此直线l的斜率为-3.2.已知直线l1:(t为参数)与直线l2:(s为参数)垂直,求k的值.解直线l1的方程为y=-x+,斜率为-;直线l2的方程为y=-2x+1,斜率为-2. l1与l2垂直,∴(-)×(-2)=-1⇒k=-1.3.已知点P(3,m)在以点F为焦点的抛物线(t为参数)上,求PF的值.解将抛物线的参数方程化为普通方程为y2=4x,则焦点F(1,0),准线方程为x=-1,又P(3,m)在抛物线上,由抛物线的定义知PF=3-(-1)=4.4.(2016·江苏)在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),椭圆C的参数方程为(θ为参数).设直线l与椭圆C相交于A,B两点,求线段AB的长.解直线l的方程化为普通方程为x-y-=0,椭圆C的方程化为普通方程为x2+=1,联立方程组得解得或∴A(1,0),B.故AB==.题型一参数方程与普通方程的互化例1(2016·全国甲卷)在直角坐标系xOy中,圆C的方程为(x+6)2+y2=25.(1)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;(2)直线l的参数方程是(t为参数),l与C交于A、B两点,AB=,求l的斜率.解(1)由x=ρcosθ,y=ρsinθ可得圆C的极坐标方程ρ2+12ρcosθ+11=0.(2)在(1)中建立的极坐标系中,直线l的极坐标方程为θ=α(ρ∈R).设A,B所对应的极径分别为ρ1,ρ2,将l的极坐标方程代入C的极坐标方程得ρ2+12ρcosα+11=0.于是ρ1+ρ2=-12cosα,ρ1ρ2=11.AB=|ρ1-ρ2|==.由AB=得cos2α=,tanα=±.所以l的斜率为或-.思维升华消去参数的方法一般有三种(1)利用解方程的技巧求出参数的表示式,然后代入消去参数;(2)利用三角恒等式消去参数;(3)根据参数方程本身的结构特征,灵活的选用一些方法从整体上消去参数.将参数方程化为普通方程时,要注意防止变量x和y取值范围的扩大或缩小,必须根据参数的取值范围,确定函数f(t)和g(t)的值域,即x和y的取值范围.(1)求直线(t为参数)与曲线(α为参数)的交点个数.(2)在平面直角坐标系xOy中,若直线l:(t为参数)过椭圆C:(φ为参数)的右顶点,求常数a的值.解(1)将消去参数t得直线x+y-1=0;将消去参数α得圆x2+y2=9.又圆心(0,0)到直线x+y-1=0的距离d=<3.因此直线与圆相交,故直线与曲线有2个交点.(2)直线l的普通方程为x-y-a=0,椭圆C的普通方程为+=1,∴椭圆C的右顶点坐标为(3,0),若直线l过(3,0),则3-a=0,∴a=3.题型二参数方程的应用例2(2016·扬州二模)已知直线l的参数方程为(t为参数),圆C的参数方程为(θ为参数).(1)求直线l和圆C的普通方程;(2)若直线l与圆C有公共点,求实数a的取值范围.解(1)直线l的普通方程为2x-y-2a=0,圆C的普通方程为x2+y2=16.(2)因为直线l与圆C有公共点,故圆C的圆心到直线l的距离d=≤4,解得-2≤a≤2.思维升华已知圆、圆锥曲线的参数方程解决有关问题时,一般是把参数方程化为普通方程,通过互化解决与圆、圆锥曲线上动点有关的问题,如最值、范围等.在平面直角坐标系xOy中,曲线C1和C2的参数方程分别为和(t为参数),求曲线C1与C2的交点坐标.解曲线C1的普通方程为x2+y2=5(x≥0,y≥0).曲线C2的普通方程为x-y-1=0.解方程组得∴曲线C1与C2的交点坐标为(2,1).题型三极坐标方程和参数方程的综合应用例3(2016·全国乙卷)在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(1)说明C1是哪一种曲线,并将C1的方程化为极坐标方程;(2)直线C3...