3.2特殊平行四边形课题3.2特殊平行四边形(一)第4课时授课时间月日主备人集备人课型新授本案为总数第24个教学目标1、能够运用综合法和严密的数学语言证明矩形的性质和判定定理以及其他相关结论2、经历探索、猜测、证明的过程,发展学生的推理论证能力,培养学生找到解题思路的能力,使学生进一步体会证明的必要性以及计算与证明在解决问题中的作用;3、学生通过对比前面所学知识,体会证明过程中所运用的归纳、概括以及转化等数学思想方法;4、通过学生独立完成证明的过程,让学生体会数学是严谨的科学,增强学生对待科学的治学态度,从而养成良好的习惯。重点难点关键1、掌握矩形的性质和判定以及证明方法。2、运用综合法证明矩形性质和判定3、灵活掌握矩形性质及推论教学构想(教学板块和问题情景)导学创设(各板块达标练习设计)学生活动(活动预设及效果评价)一、巧设现实情境,引入新课上两节课我们探讨了平行四边形的性质定理及判定定理.下面我们来共同回忆总结:1、性质:对边相等,对角相等,邻角互补,对角线互相平分;2、判定:分别平行,两组对边分别相等,一组对边平行且相等,两组对角分别相等,对角线互相平分的四边边形是平行四边形3、了平行四边形后,特殊的平行四边形与平行四边形的关系吗?能用一张图来表示它们之间的关系吗?可用下图来表示它们之间的关系:二、讲授新课1.前面我们已探讨过矩形的性质,矩形的四个角都是直角;矩形的对角线相等.那你能证明它们吗?已知四边形ABCD是矩形.求证:∠A=∠B=∠C=∠D=90°.已知矩形ABCD,求证:AC=DB.定理:矩形的四个角都是直角.矩形的对角线相等.2.如图,设矩形的对角线AC与BD的交点为E,那么BE是Rt△ABC中一条怎样的特殊线段?它与AC有什么大小关系?为什么?推论:直角三角形斜边上的中线等于斜边的一半.如图,已知BE是Rt△ABC的斜边AC上的中线.求证:BE=AC.直接应用:∵BE是Rt△ABC的AC上的中线,∴BE=AC.(直角三角形斜边上的中线等于斜边的一半)3.例题:如图,矩形ABCD的两条对角线相交于点O,已知∠AOD=120°,AB=2.5cm.求矩形对角线的长.小明认为,这个题还可以这样想:∠AOD=120°→∠AOB=60°→OA=OB=AB→AC=20A=2×2.5=5(cm).你能帮小明写出完整的解题过程吗?三、课堂练习(一)课本P84随堂练习11.证明:有三个角是直角的四边形是矩形.四、课时小结矩形的性质,现在来归纳:五、课后作业课本P85随堂练习1教后感