电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

数列求和及数列通项公式的基本方法和技巧VIP免费

数列求和及数列通项公式的基本方法和技巧_第1页
1/15
数列求和及数列通项公式的基本方法和技巧_第2页
2/15
数列求和及数列通项公式的基本方法和技巧_第3页
3/15
数列求和及数列通项公式的基本方法和技巧导语:数列是高中代数的重要内容,又是学习高等数学的基础.在高考和各种数学竞赛中都占有重要的地位.数列求和及数列的通项公式是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧.下面,就几个历届高考数学来谈谈数列求和及数列通项公式的基本方法和技巧.(一)数列求和一、利用常用求和公式求和.利用下列常用求和公式求和是数列求和的最基本最重要的方法.1、等差数列求和公式:dnnnaaanSnn2)1(2)(112、等比数列求和公式:)1(11)1()1(111qqqaaqqaqnaSnnn3、)1(211nnkSnkn4、)12)(1(6112nnnkSnkn5、213)]1(21[nnkSnkn【例1】求和:)0(1422242xxxxxnn【解】 x≠0∴该数列是首项为1,公比为x2的等比数列,而且有n+3项当x2=1,即x=±1时,和为n+3.当12x,即1x时,和为262232111)(1xxxxnn.评注:(1)利用等比数列求和公式.当公比是用字母表示时,应对其是否为1进行讨论,如本题若为“等比”的形式而并未指明其为等比数列,还应对x是否为0进行讨论.(2)要弄清数列共有多少项,末项不一定是第n项.二、错位相减法求和.错位相减法求和在高考中占有相当重要的位置,近几年来的高考题其中的数列方面都出了这方面的内容.需要我们的学生认真掌握好这种方法.这种方法是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列{an·bn}的前n项和,其中{an}、{bn}分别是等差数列和等比数列.求和时一般在已知和式的两边都乘以组成这个数列的等比数列的公比q;然后再将得到的新和式和原和式相减,转化为同倍数的等比数列求和,这种方法就是错位相减法.【例2】求和:)1()12(7531132xxnxxxSnn⋯⋯⋯⋯⋯⋯⋯⋯⋯①【解】由题可知,{1)12(nxn}的通项是等差数列{2n-1}的通项与等比数列{1nx}的通项之积.设nnxnxxxxxS)12(7531432⋯⋯⋯⋯⋯⋯⋯⋯⋯.②(设置错位)①-②得nnnxnxxxxxSx)12(222221)1(1432(错位相减)再利用等比数列的求和公式得:nnnxnxxxSx)12(1121)1(1∴21)1()1()12()12(xxxnxnSnnn评注:(1)要考虑当公比x为值1时为特殊情况;(2)错位相减时要注意末项;(3)此类题的特点是所求数列是由一个等差数列与一个等比数列对应项相乘.三、反序相加法求和.这是推导等差数列的前n项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个)(1naa.【例3】求证:nnnnnnnCnCCC2)1()12(53210【证明】设nnnnnnCnCCCS)12(53210⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..①把①式右边倒转过来得0113)12()12(nnnnnnnCCCnCnS(反序)又由mnnmnCC可得nnnnnnnCCCnCnS1103)12()12(⋯⋯⋯⋯..⋯⋯..②①+②得nnnnnnnnnCCCCnS2)1(2))(22(2110(反序相加)∴nnnS2)1(四、分组法求和.有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.若数列na的通项公式为nnnbac,其中nnba,中一个是等差数列,另一个是等比数列,求和时一般用分组结合法.【例4】求数列1614813412211,,,的前n项和;分析:数列的通项公式为nnna21,而数列nn21,分别是等差数列、等比数列,求和时一般用分组结合法;【解】因为nnna21,所以)21()813()412()211(nnns)21814121()321(nn(分组)前一个括号内是一个等比数列的和,后一个括号内是一个等差数列的和,因此1212211)211(212)1(2nnnnnn五、裂项法求和.这是分解与组合思想在数列求和中的具体应用.裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的.通项分解(裂项)如:(1))()1(nfnfan;(2)nnnntan)1tan()1cos(cos1sin;(3)111)1(1nnnnan;(4))121121(211)12)(12()2(2nnnnnan;(5)])2)(1(1)1(1[21)2)(1(1nnnnnnnan.【例5】求数列,11,,321,211nn的前n项和.【解】设nnnnan111(裂项)则11321211nnSn(裂项求和)=)1()23()12(nn=11n小结:此类变形的特点是将原数列每一项拆为两项之后,其中中间的大部分项都互相抵消了.只剩下有限的几项.注意:余下的项具有如下的特点1余下的项前后的位置前后是对称的.2余下的项前后的正负性...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

数列求和及数列通项公式的基本方法和技巧

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部