1.1整式教学目标:1.在现实情景中进一步理解用字母表示数的意义,发展符号感.2.了解整式产生的背景和整式的概念,能求出整式的次数.教学重点:整式的概念与整式的次数.教学难点:整式的次数.教学过程:一、整式的有关概念:(1)单项式的定义:像1.5V,,等,都是数与字母的乘积,这样的代数式叫做单项式.注:①单独一个数与一个字母也是单项式.②形如形式的代数式不是单项式.(2)单项式的次数:一个单项式中,所有字母的指数和叫做这个单项式的次数.注:单独一个数的次数是0次.(3)多项式的概念:几个单项式的和叫做多项式.注:①多项式概念中的和指代数和,即省略了加号的和的形式.②多项式中不含字母的项叫做常数项.(4)多项式的次数:一个多项式中,次数最高项的次数,叫做这个多项式的次数.(5)整式的概念:单项式和多项式统称为整式.二、定义的补充:(1)单项式的系数:单项式中的数字因数叫做单项式的系数.注:①单个字母的系数为1;②单项式的系数包括符号.(2)多项式的项数:多项式中单项式的个数叫做多项式的项数.三、区别是否整式:关键:分母中是否含有字母?四、例题讲解:例1:下列代数式中,哪些是整式?单项式?多项式?ab+c,ax2+bx+c,-5,,,例2:求下列各单项式的系数及次数:,-ab2c例3:说出下列多项式为几次几项式?-x-x2y+2,6x3y2-5+xy3-x2例4:根据题意列出代数式,并判断是否为整式.①ab两数的积除以两数的和;②ab两数的积的一半的平方;③3月12日是植树节,七年级一班和二班的同学参加了植树活动,一班种了棵树,二班种的比一班的2倍多棵,这两个班一共种了多少棵树?④课本例题.五、当堂练习:1.若-2am+2b4是7次单项式,则=_______;2.多项式x2-3x-4共有_____项,次数是________.六、竞赛积累题:已知a=2,b=3,则()(A)ax3y2和bm3n2是同类项(B)3xay3和bx3y3是同类项(C)bx2a+1y4和ax5yb+1是同类项(D)5m2bn5a和6n2bm5a是同类项七、小结:本节课主要学习了单项式、多项式、整式的概念及单项式、多项式的次数及系数的概念.教学后记:1.2整式的加减(1)教学目的:1.经历及字母表示数量关系的过程,发展符号感;2.会进行整式加减的运算,并能说明其中的算理,发展有条理的思考及语言表达能力.教学重点:会进行整式加减的运算,并能说明其中的算理.教学难点:正确地去括号、合并同类项,及符号的正确处理.教学过程:一、课前练习:1.填空:整式包括_____________和_______________2.单项式的系数是___________、次数是__________3.多项式3m3-2m-5+m2是_____次______项式,其中二次项系数是______,一次项是__________,常数项是____________.4.下列各式,是同类项的一组是()(A)22x2y与yx2(B)2m2n与2mn2(C)ab与abc5.去括号后合并同类项:(3a-b)+(5a+2b)-(7a+4b).二、探索练习:1.如果用a、b分别表示一个两位数的十位数字和个位数字,那么这个两位数可以表示为_____________交换这个两位数的十位数字和个位数字后得到的两位数为__________________,这两个两位数的和为_________________________________.2.如果用a、b、c分别表示一个三位数的百位数字、十位数字和个位数字,那么这个三位数可以表示为___________,交换这个三位数的百位数字和个位数字后得到的三位数为______________,这两个三位数的差为___________________________.●议一议:在上面的两个问题中,分别涉及到了整式的什么运算?说说你是如何运算的?▲整式的加减运算实质就是____________________________,运算的结果是一个多项式或单项式.三、巩固练习:1.填空:(1)2a-b与a-b的差是__________________________;(2)单项式、、、的和为___________;(3)如图所示,下面为由棋子所组成的三角形,一个三角形需六个棋子,三个三角形需_______个棋子,n个三角形需__________个棋子.2.计算:(1);(2);(3).3.(1)求与的和;(2)求与的差.4.先化简,再求值:,其中.四、提高练习:1.若A是五次多项式,B是三次多项式,则A+B一定是()(A)五次整式(B)八次多项式...