电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

辽宁省庄河市第三初级中学九年级数学下册 27.2.1 相似三角形的判定教案(一) 新人教版VIP免费

辽宁省庄河市第三初级中学九年级数学下册 27.2.1 相似三角形的判定教案(一) 新人教版_第1页
1/2
辽宁省庄河市第三初级中学九年级数学下册 27.2.1 相似三角形的判定教案(一) 新人教版_第2页
2/2
相似三角形的判定教学时间课题27.2.1相似三角形的判定(一)课型新授课教学目标知识和能力掌握两个三角形相似的判定条件(三个角对应相等,三条边的比对应相等,则两个三角形相似)——相似三角形的定义,和三角形相似的预备定理(平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似).过程和方法经历两个三角形相似的探索过程,体验分析归纳得出数学结论的过程,进一步发展学生的探究、交流能力.情感态度价值观会运用“两个三角形相似的判定条件”和“三角形相似的预备定理”解决简单的问题.教学重点相似三角形的定义与三角形相似的预备定理.教学难点三角形相似的预备定理的应用.教学准备教师多媒体课件学生“五个一”课堂教学程序设计设计意图一、课堂引入1.复习引入(1)相似多边形的主要特征是什么?(2)在相似多边形中,最简单的就是相似三角形.在△ABC与△A′B′C′中,如果∠A=∠A′,∠B=∠B′,∠C=∠C′,且.我们就说△ABC与△A′B′C′相似,记作△ABC∽△A′B′C′,k就是它们的相似比.反之如果△ABC∽△A′B′C′,则有∠A=∠A′,∠B=∠B′,∠C=∠C′,且.(3)问题:如果k=1,这两个三角形有怎样的关系?2.教材P41的思考,并引导学生探索与证明.3.【归纳】三角形相似的预备定理平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似.二、例题讲解例1(补充)如图△ABC∽△DCA,AD∥BC,∠B=∠DCA.(1)写出对应边的比例式;(2)写出所有相等的角;(3)若AB=10,BC=12,CA=6.求AD、DC的长.分析:可类比全等三角形对应边、对应角的关系来寻找相似三角形中的对应元素.对于(3)可由相似三角形对应边的比相等求出AD与DC的长.解:略(AD=3,DC=5)例2(补充)如图,在△ABC中,DE∥BC,AD=EC,DB=1cm,AE=4cm,BC=5cm,求DE的长.分析:由DE∥BC,可得△ADE∽△ABC,再由相似三角形的性质,有,又由AD=EC可求出AD的长,再根据求出DE的长.解:略().三、课堂练习1.(选择)下列各组三角形一定相似的是()A.两个直角三角形B.两个钝角三角形C.两个等腰三角形D.两个等边三角形2.(选择)如图,DE∥BC,EF∥AB,则图中相似三角形一共有()A.1对B.2对C.3对D.4对3.如图,在□ABCD中,EF∥AB,DE:EA=2:3,EF=4,求CD的长.(CD=10)作业设计必做教科书P54:4、5选做教学反思

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

辽宁省庄河市第三初级中学九年级数学下册 27.2.1 相似三角形的判定教案(一) 新人教版

您可能关注的文档

海博书城+ 关注
实名认证
内容提供者

从事历史教学,热爱教育,高度负责。

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部