江苏省涟水县徐集中学八年级数学上册第三章中心对称图形(一)3.6三角形、梯形的中位线教案苏科版教学方法教学过程教学活动内容个人主页一、情境创设怎样将一张三角形纸片剪成两部分,使分成的两部分能拼与一个平行四边形。二、新知探究活动一:操作——观察——探索操作:操作1:把一个等边三角形剪成四个全等的三角形——取三边中点,并分别连接(图1);操作2:把一个任意三角形剪成四个全等的三角形——取三边中点,并分别连接(图2);操作3:把一个任意三角形剪拼成一个平等四边形——剪一个三角形,记为△ABC;分别取AB、AC的中点D、E,连接DE;沿DE将△ABC剪成两部分,并将△ADE续点E旋转180°,得四边形BCFD(图3)。【操作1是学生已熟知的内容,以此作铺垫,学生能利用类比的方法解决操作图2EDCBAF图32,通过对操作2图形的观察、思考,操作3将迎刃而解,如此设计,遵循由特殊到一般的规律,符合学生认知特点。】观察:四边形BCFD是平行四边形吗?探索:问题1:要判定一个四边形是平行四边形,须具备什么条件?(边、角、对角线)问题2:结合此题中的条件,你感觉应该选用哪种方法?由操作3和△ADE≌△CFE,得CF∥DB,所以四边形BCFD是平行四边形。【通过对问题的逐层分析,把解决问题方案的范围逐渐缩小,最终确定一个合理的方案。能培养学生严密推理的能力和良好的思维习惯。】活动二:探索三角形中位线的性质。(1)概念:连接三角形两边中点的线段叫做三角形的中位线。问题:你能说出三角形的中位和三角形中位线的区别吗?画图描述。【这两个概念容易混淆,通过画图比较,巩固学生对中位线概念的理解,培养学生严谨细致的学习习惯。】(2)探索:如图3,DE是△ABC的中位线,DE与BC有怎样的位置关系和数量关系?为什么?操作1:你能直观感知它们之间的关系吗?用三角板验证。操作2:你能用说理的方法来验证它们之间的这种关系吗?由活动一知DE=1/2DF=1/2BC,DE∥BC。三角形中位线的性质:三角形的中位线平行于第三边,并且等于第三边的一半。【先由直观的方法感知DE与BC的位置与数量上的关系,再用说理的方式来验证这一关系,此举既满足了学生探求新知的欲望,获得成功的体验,又刺激学生进行更深入的探求。】(3)尝试练习:填空①如图4,Rt△ABC中,∠C=90°,点D、E、F分别是△ABC三边中点,DE=4cm,则CF=cm。CH图5FEDBAG②如图1,若△ABC的周长是16cm,则△DEF的周长是cm。③若三角形三条中位线长分别是3cm、4cm、5cm,则这个三角形的面积是cm2。【通过练习,加深对所学知识的理解,能较熟练的解决一些基本问题。】三、尝试运用(一)例题讲解例1:如图5,在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA、的中点,四边形EFGH是平行四边形吗?为什么?操作1:请任画一个四边形,顺次连接四边形各边的中点。问题1:猜想探索得到的四边形的形状,并说明理由。问题2:由E、F分别是中点,你能联想到什么?你应该如何做?【对大部分学生而言,此题难度较大,原因在于条件与结论之间无法建立直接的联系,学生易产生思维障碍,因此需要将难度分解,把问题慢慢引向三角形中位线的性质上,让学生进一步感受转化思想的重要性。】(二)巩固练习1、顺次连结矩形四边的中点所得的四边形是()A.矩形B.菱形C.正方形D.以上都不对2、如果四边形的对角线互相垂直,那么顺次连结四边形中点所得的四边形是()A.矩形B.菱形C.正方形D.以上都不对3、如果顺次连结四边形各边中点组成的四边形是菱形,那么原来的四边形的对角线()A.互相平分B.互相垂直C.相等D.相等且互相平分4、顺次连结下列各四边形中点所得的四边形是矩形的是().A.等腰梯形B.矩形C.平行四边形D.菱形或对角线互相垂直的四边形5、△ABC中,D、E分别是AB、AC的中点,则线段CD是△ABC的_EFDCAB图4__,线段DE是△ABC_______6、如图,D、E、F分别是△ABC各边的中点,(1)如果EF=4cm,那么BC=__cm;如果AB=10cm,那么DF=___cm;(2)中线AD与中位线EF的关系是___7、如图,四边形ABCD中,AB=CD,M、N分别是AD、BC的中点,延长BA、NM、CD分别交于点E、F。试说明∠BEN=∠NFC.8、如图,A、B两地被...