2.2探索直线平行的条件(第2课时)一、教学目标:1.会识别由“三线八角”构成的内错角合同旁内角。2.经历探索直线平行条件的过程,掌握利用同位角相等、同旁内角互补判别直线平行的结论,并能解决一些问题。3.经历观察、操作、想象、图利、交流等活动,体会利用操作、归纳获得数学结论的过程,进一步发展空间想象、推理能力和有条理表达的能力。4.使学生在参与探索、交流的数学活动中,进一步体验数学与实际生活的密切联系。二、教学设计分析:本节课共设计了五个环节:立足基础,温故知新、创设情境,提出问题、大胆探究,各抒己见、及时巩固,深化提高、归纳小结,反思提高。第一环节:立足基础,温故知新活动内容:1.通过以下问题带领学生在复习“三线八角”基本图形和同位角的基础上,进一步学习内错角和同旁内角。问题1:如图,直线a,b被直线c所截,数一数图中有几个角(不含平角)?问题2:写出图中的所有同位角,并用自己的语言说明什么样的角是同位角?引导学生从角与截线与被截线的位置关系的角度来描述同位角。问题3:它们具备什么关系能够判断直线a∥b?你的依据是什么?问题4:图中∠3与∠5,∠4与∠6这样位置关系的角有什么特点?∠3与∠6,∠4与∠5这样位置关系的角呢?说说你的理由。由此引导学生概括得出内错角与同旁内角的概念。2.巩固练习1:课本随堂练习1:观察右图并填空:(1)∠1与是同位角;(2)∠5与是同旁内角;(3)∠2与是内错角。练习2:如图,直线AB,CD被EF所截,构成了八个角,你能找出哪些角是同位角、内错角、同旁内角吗?anmb3452141235678DCBEAFcab活动目的:在第一课时学生已经初步接触了三线八角中的同位角,设计问题1、2的目的是从学生已有的知识入手复习,通过对同位角的进一步复习,再次让学生认识到具备同位角关系的一对角是在被截直线的同一侧,在截线的同一旁,相对位置是相同的,为类比学习内错角和同旁内角做好铺垫。通过问题4,引导学生概括出图中∠3与∠5,∠4与∠6这样位置关系的角,在两条被截直线的内部,在截线的两侧,位置是交错的,这样的角叫做内错角;而像∠3与∠6,∠4与∠5这样位置关系的角,在两条被截直线的内部,在截线的同旁,这样的角叫做同旁内角,由此得到对内错角和同旁内角的初步认识,再通过两个较简单的练习及时巩固,实现本课的第一个教学目标。第二环节:创设情境,提出问题活动内容:1.给出实际问题:小明有一块小画板,他想知道它的上下边缘是否平行,于是他在两个边缘之间画了一条线段AB(如图所示)。小明只有一个量角器,他通过测量某些角的大小就能知道这个画板的上下边缘是否平行,你知道他是怎样做的吗?2.画板上下边缘是否平行能利用同位角来判断吗?如果不能,是否可以利用其他角来判断?请你先自主探索,再与同伴交流。设计目的:创设这个情境的目的在于引导学生思考,当用同位角不能直接判断直线是否平行时,应该怎么办?由此激发学生进一步去探索直线平行的条件。教学时教师鼓励学生充分操作和思考,探索还有哪些角可以用来判断直线是否平行。这样设计,使得探索活动成为解决实际问题的需要,进一步渗透数学的应用价值。在解决问题2的过程中,由于有了第一环节的铺垫,学生的探究方向比较明确。第三环节:大胆探究,各抒己见活动内容:依次完成以下几个步骤,引导学生从实践到理论探索直线平行的条件1.课本议一议:(1)内错角满足什么关系时,两直线平行?为什么?(2)同旁内角满足什么关系时,两直线平行?为什么?请你先独立思考,采用你认为适当的方式来说明理由,然后再与同学交流。2.观察课件中的三线八角,内错角的变化和同旁内角的变化,得出结论:内错角相等,两直线平行。同旁内角互补,两直线平行。3.挑战自我:你能结合图形用推理的方式来说明以上两个结论成立的理由吗?如图,直线a,b被直线c所截,当(1)∠1=∠2,(2)∠1+∠3=180°时,说明a∥b的理由。活动目的:本环节的教学是重点,鉴于学生在第一课时已有了探究的经验和方法,本课的第一环节又学会了识别内错角和同旁内角,所以将此探究先放给学生。由于探究的方式较多,具有一定的开放性,给学生留有...