十字相乘法(3)教学目标1.使学生掌握运用十字相乘法把某些形如ax2+bx+c的二次三项式分解因式;2.进一步培养学生的观察力和思维和敏捷性.教学重点和难点重点:正确地运用十字相乘法把某些二次项系数不是1的二次三项式分解因式;难点:灵活运用十字相乘法分解因式.教学过程设计一、导入新课把下列各式多分解因式:1.x2+6x-72;2.(x+y)2-8(x+y)+48;3.x4-7x2+18;4.x2-10xy-56y2.答:1.(x+12)(x-6);2.(x+y-12)(x+y+4);3.(x+3)(x-3)(x2+2);4.(x-14y)(x+4y).我们已经学习了把形如x2+px+q的某些二次三项式分解因式,也学习了通过设辅助元的方法把能转化为形如x2+px+q型的某些多项式分解因式.对于二次项系数不是非曲直的二次三项式如何分解因式呢?这节课就来讨论这个问题,即把某些形如ax2+bx+c的二次三项式分解因式.二、新课例1把2x2-7x+3分解因式.分析:先分解二次项系数,分别写在十字交叉线的左上角和左下解,再分解常数项,分别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数.分解二次项系数(只取正因数):2=1×2=2×1;分解常数项:3=1×3=1×3==(-3)×(-1)=(-1)×(-3).用画十字交叉线方法表示下列四种情况:11231×3+2×1=513211×1+2×3=71-12-31×(-3)+2×(-1)=-51-32-11×(-1)+2×(-3)=-7经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7.解2x2-7x+3=(x-3)(2x-1).一般地,对于二次三项式ax2+bx+c(a≠0),如果二次项系数a可以分解成两个因数之积,即a=a1a2,常数项c可以分解成两个因数之积,即c=c1c2,把a1,a2,c1,c2,排列如下:a1c1a2c2a1a2+a2c1按斜线交叉相乘,再相加,得到a1a2+a2c1,若它正好等于二次三项式ax2+bx+c的一次项系数b,即a1c2+a2c1=b,那么二次三项式就可以分解为两个因式a1x+c1与a2x+c2之积,即ax2+bx+c=(a1x+c1)(a2x+c2).像这种借助画十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做十字相乘法.例2把6x2-7x-5分解因式.分析:按照例1的方法,分解二次项系数6及常数项-5,把它们分别排列,可有8种不同的排列方法,其中的一种213-52×(-5)+3×1=-7是正确的,因此原多项式可以用十字相乘法分解因式.解6x2-7x-5=(2x+1)(3x-5).指出:通过例1和例2可以看到,运用十字相乘法把一个二次项系数不是1的二次三项式因式分解,往往要经过多次观察,才能确定是否可以用十字相乘法分解因式.对于二次项系数是1的二次三项式,也可以用十字相乘法分解因式,这时只需考虑如何把常数项分解因数.例如把x2+2x-15分解因式,十字相乘法是1-3151×5+1×(-3)=2所以x2+2x-15=(x-3)(x+5).例3把5x2+6xy-8y2分解因式.分析:这个多项式可以看作是关于x的二次三项式,把-8y2看作常数项,在分解二次项及常数项系数时,只需分解5与-8,用十字交叉线分解后,经过观察,选取合适的一组,即125-41×(-4)+5×2=6解5x2+6xy-8y2=(x+2y)(5x-4y).指出:原式分解为两个关于x,y的一次式.例4把(x-y)(2x-2y-3)-2分解因式.分析:这个多项式是两个因式之积与另一个因数之差的形式,只有先进行多项式的乘法运算,把变形后的多项式再因式分解.问:两上乘积的因式是什么特点,用什么方法进行多项式的乘法运算最简便?答:第二个因式中的前两项如果提出公因式2,就变为2(x-y),它是第一个因式的二倍,然后把(x-y)看作一个整体进行乘法运算,可把原多项式变形为关于(x-y)的二次三项式,就可以用十字相乘法分解因式了.解(x-y)(2x-2y-3)-2=(x-y)[2(x-y)-3]-2=2(x-y)2-3(x-y)-2=[(x-y)-2][2(x-y)+1]=(x-y-2)(2x-2y+1).1-22+11×1+2×(-2)=-3指出:把(x-y)看作一个整体进行因式分解,这又是运用了数学中的“整体”思想方法.三、课堂练习1.用十字相乘法分解因式:(1)2x2-5x-12;(2)3x2-5x-2;(3)6x2-13x+5;(4)7x2-19x-6;(5)12x2-13x+3;(6)4x2+24x+27.2.把下列各式分解因式:(1)6x2-13xy+6y2;(2)8x2y2+6xy-35;(3)18x2-21xy+5y2;(4)2(a+b)2+(a+b)(a-b)-6(a-b)2.答案:1.(1)(x-4)(2x+3);(2)(x-2)(3x+1...