课时作业1集合、复数与常用逻辑用语一、选择题1.[2020·贵阳市第一学期监测考试]满足i3·z=1-3i的复数z的共轭复数是()A.3-iB.-3-iC.3+iD.-3+i2.[2020·成都市诊断性检测]已知集合A={-1,0,m},B={1,2}.若A∪B={-1,0,1,2},则实数m的值为()A.-1或0B.0或1C.-1或2D.1或23.[2020·湖北八校第一次联考]已知集合M={x|x2-5x-6≤0},N=,则()A.M⊆NB.N⊆MC.M=ND.M⊆(∁RN)4.命题“若a2+b2=0,则a=0且b=0”的逆否命题是()A.若a2+b2≠0,则a≠0且b≠0B.若a2+b2≠0,则a≠0或b≠0C.若a=0且b=0,则a2+b2≠0D.若a≠0或b≠0,则a2+b2≠05.[2020·深圳市统一测试]若复数z=的实部为0,其中a为实数,则|z|=()A.2B.C.1D.6.[2020·南充市第一次适应性考试]“A=60°”是“cosA=”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.[2020·昆明市三诊一模]已知集合A={x∈N|x2≤1},集合B={x∈Z|-1≤x≤3},则图中阴影部分表示的集合是()A.[1,3]B.(1,3]C.{-1,2,3}D.{-1,0,2,3}8.[2020·开封市第一次模拟考试]在复平面内,复数对应的点位于直线y=x的左上方,则实数a的取值范围是()A.(-∞,0)B.(-∞,1)C.(0,+∞)D.(1,+∞)9.[2020·江西五校联考]已知集合M={x|x2-3x+2≤0},N={x|y=},若M∩N=M,则实数a的取值范围为()A.(-∞,1]B.(-∞,1)C.(1,+∞)D.[1,+∞)10.[2019·全国卷Ⅰ]设复数z满足|z-i|=1,z在复平面内对应的点为(x,y),则()A.(x+1)2+y2=1B.(x-1)2+y2=1C.x2+(y-1)2=1D.x2+(y+1)2=111.[2020·河北九校第二次联考]下面有四个命题:①“∀x∈R,ex>0”的否定是“∃x0∈R,ex0≤0”;②命题“若θ=,则cosθ=”的否命题是“若θ=,则cosθ≠”;③“lnm0(i为虚数单位),则实数a等于________.14.设U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+m=0};若(∁UA)∩B=∅,则m=________.15.已知下列命题:①∃x0∈,sinx0+cosx0≥;②∀x∈(3,+∞),x2>2x+1;③∀x∈R,2x+>2;④∃x0∈,tanx0>sinx0.其中真命题为________(填所有真命题的序号).16.[2020·北京西城期末]已知集合A={x|x2-x-6≥0},B={x|x>c},其中c∈R.(1)集合∁RA=____________;(2)若∀x∈R,都有x∈A或x∈B,则c的取值范围是____________.课时作业1集合、复数与常用逻辑用语1.解析:由题意,得z====3+i,所以z=3-i,故选A.答案:A2.解析:因为A={-1,0,m},B={1,2},A∪B={-1,0,1,2},所以m∈(A∪B),m不能等于A中的其他元素,所以m=1或m=2.答案:D3.解析:由x2-5x-6≤0得-1≤x≤6,即M=[-1,6];由y=x,x≥-1得0a+1,解得a<0.故实数a的取值范围是(-∞,0),选A.答案:A9.解析:由题意,得M={x|(x-1)(x-2)≤0}={x|1≤x≤2},N={x|x≥a},由M∩N=M得,M⊆N,所以a≤1,选A.答案:A10.解析: z在复平面内对应的点为(x,y),∴z=x+yi(x,y∈R). |z-i|=1,∴|x+(y-1)i|=1,∴x2+(y...