专题限时集训(十四)导数1.(2019·全国卷Ⅰ)已知函数f(x)=2sinx-xcosx-x,f′(x)为f(x)的导数.(1)证明:f′(x)在区间(0,π)存在唯一零点;(2)若x∈[0,π]时,f(x)≥ax,求a的取值范围.[解](1)证明:设g(x)=f′(x),则g(x)=cosx+xsinx-1,g′(x)=xcosx.当x∈时,g′(x)>0;当x∈时,g′(x)<0,所以g(x)在上单调递增,在上单调递减.又g(0)=0,g>0,g(π)=-2,故g(x)在(0,π)存在唯一零点.所以f′(x)在(0,π)存在唯一零点.(2)由题设知f(π)≥aπ,f(π)=0,可得a≤0.由(1)知,f′(x)在(0,π)只有一个零点,设为x0,且当x∈(0,x0)时,f′(x)>0;当x∈(x0,π)时,f′(x)<0,所以f(x)在(0,x0)上单调递增,在(x0,π)上单调递减.又f(0)=0,f(π)=0,所以当x∈[0,π]时,f(x)≥0.又当a≤0,x∈[0,π]时,ax≤0,故f(x)≥ax.因此,a的取值范围是(-∞,0].2.(2019·全国卷Ⅲ)已知函数f(x)=2x3-ax2+2.(1)讨论f(x)的单调性;(2)当0<a<3时,记f(x)在区间[0,1]的最大值为M,最小值为m,求M-m的取值范围.[解](1)f′(x)=6x2-2ax=2x(3x-a).令f′(x)=0,得x=0或x=.若a>0,则当x∈(-∞,0)∪时,f′(x)>0,当x∈时,f′(x)<0,故f(x)在(-∞,0),单调递增,在单调递减;若a=0,f(x)在(-∞,+∞)单调递增;若a<0,则当x∈∪(0,+∞)时,f′(x)>0,当x∈时,f′(x)<0,故f(x)在,(0,+∞)单调递增,在单调递减.(2)当0<a<3时,由(1)知,f(x)在单调递减,在单调递增,所以f(x)在[0,1]的最小值为f=-+2,最大值为f(0)=2或f(1)=4-a.于是m=-+2,M=所以M-m=当0<a<2时,可知2-a+单调递减,所以M-m的取值范围是.当2≤a<3时,单调递增,所以M-m的取值范围是.综上,M-m的取值范围是.3.(2018·全国卷Ⅰ)已知函数f(x)=aex-lnx-1.(1)设x=2是f(x)的极值点,求a,并求f(x)的单调区间;(2)证明:当a≥时,f(x)≥0.[解](1)f(x)的定义域为(0,+∞),f′(x)=aex-.由题设知,f′(2)=0,所以a=.从而f(x)=ex-lnx-1,f′(x)=ex-.当02时,f′(x)>0.所以f(x)在(0,2)单调递减,在(2,+∞)单调递增.(2)证明:当a≥时,f(x)≥-lnx-1.设g(x)=-lnx-1,则g′(x)=-.当01时,g′(x)>0.所以x=1是g(x)的最小值点.故当x>0时,g(x)≥g(1)=0.因此,当a≥时,f(x)≥0.4.(2020·全国卷Ⅲ)已知函数f(x)=x3-kx+k2.(1)讨论f(x)的单调性;(2)若f(x)有三个零点,求k的取值范围.[解](1)f′(x)=3x2-k.当k=0时,f(x)=x3,故f(x)在(-∞,+∞)单调递增.当k<0时,f′(x)=3x2-k>0,故f(x)在(-∞,+∞)单调递增.当k>0时,令f′(x)=0,得x=±.当x∈时,f′(x)>0;当x∈时,f′(x)<0;当x∈时,f′(x)>0.故f(x)在,单调递增,在单调递减.(2)由(1)知,当k≤0时,f(x)在(-∞,+∞)单调递增,f(x)不可能有三个零点.当k>0时,x=-为f(x)的极大值点,x=为f(x)的极小值点.此时,-k-1<-<<k+1且f(-k-1)<0,f(k+1)>0,f>0.根据f(x)的单调性,当且仅当f<0,即k2-<0时,f(x)有三个零点,解得k<.因此k的取值范围为.1.(2020·长沙模拟)已知函数f(x)=x--4lnx.(1)求f(x)的单调区间;(2)判断f(x)在(0,10]上的零点的个数,并说明理由.(提示:ln10≈2.303)[解](1)函数f(x)的定义域{x|x>0},f′(x)=1+-==.在区间(1,3)上,f′(x)<0,f(x)单调递减,在区间(0,1),(3,+∞)上,f′(x)>0,f(x)单调递增,所以f(x)单调递增区间(0,1),(3,+∞);f(x)单调递减区间(1,3).(2)由(1)知,f(1)=1-3-4×0=-2<0,f(3)=3-1-4ln3=2-4ln3<0,f(10)=10--4ln10=-4ln10≈9.7-4×2.303>0,所以函数f(x)在(0,10]上的零点有一个.2.(2020·芜湖模拟)已知函数f(x)=aex-2x,a∈R.(1)求函数f(x)的极值;(2)当a≥1时,证明:f(x)-lnx+2x>2.[解](1)f′(x)=aex-2,当a≤0时f′(x)<0,f(x)在R上单调递减,则f(x)无极值.当a>0时,令f′(x)=0得x=ln,f′(x)>0得x>ln,f′(x)<0得x