专题限时集训(十五)选考系列1.[选修4-4:坐标系与参数方程](2019·全国卷Ⅰ)在直角坐标系xOy中,曲线C的参数方程为(t为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为2ρcosθ+ρsinθ+11=0.(1)求C和l的直角坐标方程;(2)求C上的点到l距离的最小值.[解](1)因为-1<≤1,且x2+=+=1,所以C的直角坐标方程为x2+=1(x≠-1).l的直角坐标方程为2x+y+11=0.(2)由(1)可设C的参数方程为(α为参数,-π<α<π).C上的点到l的距离为=.当α=-时,4cos+11取得最小值7,故C上的点到l距离的最小值为.[选修4-5:不等式选讲](2020·全国卷Ⅲ)设a,b,c∈R,a+b+c=0,abc=1.(1)证明:ab+bc+ca<0;(2)用max{a,b,c}表示a,b,c的最大值,证明:max{a,b,c}≥.[证明](1)由题设可知,a,b,c均不为零,所以ab+bc+ca=[(a+b+c)2-(a2+b2+c2)]=-(a2+b2+c2)<0.(2)不妨设max{a,b,c}=a,因为abc=1,a=-(b+c),所以a>0,b<0,c<0.由bc≤,可得abc≤,故a≥,所以max{a,b,c}≥.2.[选修4-4:坐标系与参数方程](2019·全国卷Ⅱ)在极坐标系中,O为极点,点M(ρ0,θ0)(ρ0>0)在曲线C:ρ=4sinθ上,直线l过点A(4,0)且与OM垂直,垂足为P.(1)当θ0=时,求ρ0及l的极坐标方程;(2)当M在C上运动且P在线段OM上时,求P点轨迹的极坐标方程.[解](1)因为M(ρ0,θ0)在曲线C上,当θ0=时,ρ0=4sin=2.由已知得|OP|=|OA|cos=2.设Q(ρ,θ)为l上除P外的任意一点.在Rt△OPQ中,ρcos=|OP|=2.经检验,点P在曲线ρcos=2上.所以,l的极坐标方程为ρcos=2.(2)设P(ρ,θ),在Rt△OAP中,|OP|=|OA|cosθ=4cosθ,即ρ=4cosθ.因为P在线段OM上,且AP⊥OM,故θ的取值范围是.所以,P点轨迹的极坐标方程为ρ=4cosθ,θ∈.[选修4-5:不等式选讲](2019·全国卷Ⅱ)已知f(x)=|x-a|x+|x-2|(x-a).(1)当a=1时,求不等式f(x)<0的解集;(2)若x∈(-∞,1)时,f(x)<0,求a的取值范围.[解](1)当a=1时,f(x)=|x-1|x+|x-2|(x-1).当x<1时,f(x)=-2(x-1)2<0;当x≥1时,f(x)≥0.所以,不等式f(x)<0的解集为(-∞,1).(2)因为f(a)=0,所以a≥1.当a≥1,x∈(-∞,1)时,f(x)=(a-x)x+(2-x)(x-a)=2(a-x)(x-1)<0.所以,a的取值范围是[1,+∞).3.[选修4-4:坐标系与参数方程](2019·全国卷Ⅲ)如图,在极坐标系Ox中,A(2,0),B,C,D(2,π),弧AB,BC,CD所在圆的圆心分别是(1,0),,(1,π),曲线M1是弧AB,曲线M2是弧BC,曲线M3是弧CD.(1)分别写出M1,M2,M3的极坐标方程;(2)曲线M由M1,M2,M3构成,若点P在M上,且|OP|=,求P的极坐标.[解](1)由题设可得,弧AB,BC,CD所在圆的极坐标方程分别为ρ=2cosθ,ρ=2sinθ,ρ=-2cosθ.所以M1的极坐标方程为ρ=2cosθ,M2的极坐标方程为ρ=2sinθ,M3的极坐标方程为ρ=-2cosθ.(2)设P(ρ,θ),由题设及(1)知:若0≤θ≤,则2cosθ=,解得θ=;若≤θ≤,则2sinθ=,解得θ=或θ=;若≤θ≤π,则-2cosθ=,解得θ=.综上,P的极坐标为或或或.[选修4-5:不等式选讲](2019·全国卷Ⅲ)设x,y,z∈R,且x+y+z=1.(1)求(x-1)2+(y+1)2+(z+1)2的最小值;(2)若(x-2)2+(y-1)2+(z-a)2≥成立,证明:a≤-3或a≥-1.[解](1)由于[(x-1)+(y+1)+(z+1)]2=(x-1)2+(y+1)2+(z+1)2+2[(x-1)(y+1)+(y+1)(z+1)+(z+1)(x-1)]≤3[(x-1)2+(y+1)2+(z+1)2],故由已知得(x-1)2+(y+1)2+(z+1)2≥,当且仅当x=,y=-,z=-时等号成立.所以(x-1)2+(y+1)2+(z+1)2的最小值为.(2)证明:因为[(x-2)+(y-1)+(z-a)]2=(x-2)2+(y-1)2+(z-a)2+2[(x-2)(y-1)+(y-1)(z-a)+(z-a)(x-2)]≤3[(x-2)2+(y-1)2+(z-a)2],故由已知得(x-2)2+(y-1)2+(z-a)2≥,当且仅当x=,y=,z=时等号成立.因此(x-2)2+(y-1)2+(z-a)2的最小值为.由题设知≥,解得a≤-3或a≥-1.1.[选修4-4:坐标系与参数方程](2020·福清模拟)已知曲线C1:x2+(y-2)2=4在伸缩变换下得到曲线C2,以原点为极点,x轴的正半轴...