2011年第八届苏北数学建模联赛承诺书我们仔细阅读了第八届苏北数学建模联赛的竞赛规则。我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与本队以外的任何人(包括指导教师)研究、讨论与赛题有关的问题。我们知道,抄袭别人的成果是违反竞赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们愿意承担由此引起的一切后果。我们的参赛报名号为:参赛组别(研究生或本科或专科):本科参赛队员(签名):队员1:队员2:队员3:获奖证书邮寄地址:2011年第八届苏北数学建模联赛编号专用页参赛队伍的参赛号码:(请各个参赛队提前填写好):竞赛统一编号(由竞赛组委会送至评委团前编号):竞赛评阅编号(由竞赛评委团评阅前进行编号):2011年第八届苏北数学建模联赛题目旅游线路的优化设计摘要本文主要研究最佳旅游路线的设计问题。在满足相关约束条件的情况下,花最少的钱游览尽可能多的景点是我们追求的目标。基于对此的研究,建立数学模型,设计出最佳的旅游路线。第一问放松时间约束,要求游客游遍所有的景点,该问题也就成了典型的货郎担(TSP)问题。使用lingo编程得到最佳旅游路线为:徐州—常州—舟山—黄山—庐山—武汉黄鹤楼—龙门石窟—秦兵马俑—祁县乔家大院—八达岭长城—青岛崂山—徐州。第二问给定时间约束,要求设计合适的旅游路线。我们建立了一个最优规划模型,在给定游览景点个数的情况下以总费用不限,时间最少为目标。再引入0—1变量表示是否游览某个景点,从而推出交通费用和景点花费的函数表达式,给出相应的约束条件,使用lingo编程对模型求解。推荐方案:徐州—恐龙园—舟山—黄山—庐山—黄鹤楼—秦兵马俑—龙门石窟—乔家大院—八达岭长城—青岛崂山—徐州。第三问放松时间约束,要求游客在总费用低于2000元的约束下游览最多的景点。在第一问的基础上建立模型,并增加总费用低于2000元的约束。使用lingo编程得到最佳旅行路线为:徐州—常州—武汉—洛阳—西安—祁县—北京—青岛—徐州。第四问给定时间约束,放松对总费用的约束。我们在第二问的基础上建立一个最优化模型,以时间最少为目标。再引入0—1变量表示是否游览某个景点,从而推出交通费用和景点花费的函数表达式,给出相应的约束条件,使用lingo编程对模型求解。推荐方案:徐州-常州-九江-武汉-洛阳-西安-祁县-北京-徐州。第五问给定时间、总费用小于2000的双重约束。我们在第三问、第四问的基础上建立模型,以在规定时间内,规定总费用内,以游览最多景点为目标。使用lingo编程对模型求解。推荐方案:徐州-常州-舟山-黄山-九江-武汉-洛阳-西安-徐州关键词:最佳路线TCP问题景点个数最小费用目录1问题重述.......................................................................12问题分析.......................................................................22.1问题背景的理解...................................................22.2问题一和问题二的分析.......................................22.3问题三和问题四的分析.......................................22.4问题五的分析.......................................................23模型假设.......................................................................24符号说明.......................................................................35模型建立及求解...........................................................35.1问题一模型的建立及求解...................................35.2问题二模型的建立和求解...................................55.3问题三模型的建立及求解...................................75.4问题四模型的建立及求解...................................85.5问题五模型的建立及求解.................................106模型的评价改进及推广................