电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

数理统计_方差与标准差VIP免费

数理统计_方差与标准差_第1页
1/14
数理统计_方差与标准差_第2页
2/14
数理统计_方差与标准差_第3页
3/14
心理和教育方面的实验或调查所得到的数据,大都具有随机变量的性质。而对这些随机变量的描述,仅有前一章所讲集中趋势的度量是不够的。集中量数只描述数据的集中趋势和典型情况,它还不能说明一组数据的全貌。数据除典型情况之外,还有变异性的特点。对于数据变异性即离中趋势进行度量的一组统计量,称作差异量数,这些差异量数有标准差或方差,全距,平均差,四分差及各种百分差等等。第一节方差与标准差方差(Variance)也称变异数、均方。作为统计量,常用符号S2表示,作为总体参数,常用符号σ2表示。它是每个数据与该组数据平均数之差乘方后的均值,即离均差平方后的平均数。方差,在数理统计中又常称之为二阶中心矩或二级动差。它是度量数据分散程度的一个很重要的统计特征数。标准差(Standarddeviation)即方差的平方根,常用S或SD表示。若用σ表示,则是指总体的标准差,本章只讨论对一组数据的描述,尚未涉及总体问题,故本章方差的符号用S2,标准差的符号用S。符号不同,其含义不完全一样,这一点望读者能够给予充分的注意。一、方差与标准差的计算(一)未分组的数据求方差与标准差基本公式是:(3—la)(3—1b)表3—1说明公式3—1a与3—1b的计算步骤表3—1未分组的数据求方差与标准差XiXi—X=xx2=(Xi—X)2Xi26574680-1l-2020l1404362549163664N=6∑Xi=36∑x=0∑x2=10∑Xi2=226应用3—1公式的具体步骤:①先求平均数X=36/6=6;②计算Xi-X;③求(Xi-X)2即离均差x2;④将各离均差的平方求和(∑x2);⑤代入公式3—1a与3—1b求方差与标准差。具体结果如下:S2=10/6=1.67(二)已分组的数据求标准差与方差数据分组后,便以次数分布表的形式出现,这时原始数据不见了,若计算方差与标准差可用下式:(3—3a)(3—3b)式中d=(Xc-AM)/i,AM为估计平均数Xc为各分组区间的组中值f为各组区间的次数N=Σf为总次数或各组次数和i为组距。下面以表1—8数据为例,说明分组数据求方差与标准差的步骤:表3—2次数分布表求方差与标准差分组区间Xcfdfdfd2计算96-93-90-87-97949188234865431215162472756472S2=32*(570/100-(28/100)2)=50.594484-81-78-75-72-69-66-63-60-858279767370676461111719141073l1210—1—2—3—4—5—622170—14—20—21—12—5—644170144063482536S=7.113i=3Σf=100Σfd=28Σfd2=570具体步骤:①设估计平均数AM,任选一区间的Xc充任;②求d⑧用f乘d,并计算Σfd;④用d与fd相乘得fd2,并求Σfd2;⑤代入公式计算。二、方差与标准差的意义方差与标准差是表示一组数据离散程度的最好的指标。其值越大,说明离散程度大,其值小说明数据比较集中,它是统计描述与统计分析中最常应用的差异量数。它基本具备一个良好的差异量数应具备的条件:①反应灵敏,每个数据取值的变化,方差或标准差都随之变化;②有一定的计算公式严密确定;③容易计算;④适合代数运算;⑤受抽样变动的影响小,即不同样本的标准差或方差比较稳定;⑥简单明了,这一点与其他差异量数比较稍有不足,但其意义还是较明白的。除上述之外,方差还具有可加性特点,它是对一组数据中造成各种变异的总和的测量,能利用其可加性分解并确定出属于不同来源的变异性(如组间、组内等)并可进一步说明每种变异对总结果的影响,是以后统计推论部分常用的统计特征数。在描述统计部分,只需要标准差就足以表明一组数据的离中趋势了。标准差比其他各种差异量数具有数学上的优越性,特别是当已知一组数据的平均数与标准差后,便可知占一定百分比的数据落在平均数上下各两个标准差,或三个标准差之内。对于任何一个数据集合,至少有1一1/h2的数据落在平均数的h(大于1的实数)个标准差之内。(切比雪夫定理)。例如某组数据的平均数为50,标准差是5,则至少有75%(1一1/22)的数据落在50-2*5至50+2*5即40至60之间,至少有88.9%(1一1/32)的数据落在50-3*5至50+3*5=35—65之间(h=2,1-1/h2=1-1/22=3/4=75%,h=3,-1/h2=1-1/32=8/9=88.9%)。如果数据是呈正态分布,则数据将以更大的百分数落在平均数上下两个标准差之内(95%)或三个标准差之内(99.%)。三、由各小组的标准差求总标准差由于方差具有可加性特点,在已知...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

数理统计_方差与标准差

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部