求数列通项公式的十种方法一、公式法例1已知数列满足,,求数列的通项公式。解:两边除以,得,则,故数列是以为首项,以为公差的等差数列,由等差数列的通项公式,得,所以数列的通项公式为。评注:本题解题的关键是把递推关系式转化为,说明数列是等差数列,再直接利用等差数列的通项公式求出,进而求出数列的通项公式。二、利用例2.若和分别表示数列和的前项和,对任意正整数,.求数列的通项公式;解:……2分当当……4分练习:1.已知正项数列{an},其前n项和Sn满足10Sn=an2+5an+6且a1,a3,a15成等比数列,求数列{an}的通项an新疆源头学子小屋特级教师王新敞http://www.xjktyg.com/wxc/wxckt@126.comwxckt@126.comhttp://www.xjktyg.com/wxc/王新敞特级教师源头学子小屋新疆解: 10Sn=an2+5an+6,①∴10a1=a12+5a1+6,解之得a1=2或a1=3新疆源头学子小屋特级教师王新敞http://www.xjktyg.com/wxc/wxckt@126.comwxckt@126.comhttp://www.xjktyg.com/wxc/王新敞特级教师源头学子小屋新疆又10Sn-1=an-12+5an-1+6(n≥2),②由①-②得10an=(an2-an-12)+6(an-an-1),即(an+an-1)(an-an-1-5)=0 an+an-1>0,∴an-an-1=5(n≥2)新疆源头学子小屋特级教师王新敞http://www.xjktyg.com/wxc/wxckt@126.comwxckt@126.comhttp://www.xjktyg.com/wxc/王新敞特级教师源头学子小屋新疆当a1=3时,a3=13,a15=73新疆源头学子小屋特级教师王新敞http://www.xjktyg.com/wxc/wxckt@126.comwxckt@126.comhttp://www.xjktyg.com/wxc/王新敞特级教师源头学子小屋新疆a1,a3,a15不成等比数列∴a1≠3;当a1=2时,a3=12,a15=72,有a32=a1a15,∴a1=2,∴an=5n-3新疆源头学子小屋特级教师王新敞http://www.xjktyg.com/wxc/wxckt@126.comwxckt@126.comhttp://www.xjktyg.com/wxc/王新敞特级教师源头学子小屋新疆2.(2006年全国卷I)设数列的前项的和,(Ⅰ)求首项与通项;(Ⅱ)设,,证明:解:(I)21114122333aSa,解得:12a2111144122333nnnnnnnaSSaa11242nnnnaa所以数列2nna是公比为4的等比数列所以:111224nnnaa得:42nnna(其中n为正整数)(II)1114124122242221213333333nnnnnnnnSa112323112221212121nnnnnnnnTS所以:1113113221212niniT三、累加法例3已知数列满足,求数列的通项公式。解:由得则所以数列的通项公式为。评注:本题解题的关键是把递推关系式转化为,进而求出,即得数列的通项公式。例4已知数列满足,求数列的通项公式。解:由得则所以评注:本题解题的关键是把递推关系式转化为,进而求出,即得数列的通项公式。例5已知数列满足,求数列的通项公式。解:两边除以,得,则,故因此,则评注:本题解题的关键是把递推关系式转化为,进而求出,即得数列的通项公式,最后再求数列的通项公式。四、累乘法例6已知数列满足,求数列的通项公式。解:因为,所以,则,故所以数列的通项公式为评注:本题解题的关键是把递推关系转化为,进而求出,即得数列的通项公式。例7已知数列满足,求的通项公式。解:因为①所以②用②式-①式得则故所以③由,,则,又知,则,代入③得。所以,的通项公式为评注:本题解题的关键是把递推关系式转化为,进而求出,从而可得当的表达式,最后再求出数列的通项公式。五.构造等差或等比或例8(2006年福建卷)已知数列满足求数列的通项公式;解:是以为首项,2为公比的等比数列。即例9.已知数列中,,,求。解:在两边乘以得:令,则,解之得:所以练习.已知数列满足,且。(1)求;(2)求数列的通项公式。解:(1)(2)∴六、待定系数法例10已知数列满足,求数列的通项公式。解:设④将代入④式,得,等式两边消去,得,两边除以,得代入④式得⑤由及⑤式得,则,则数列是以为首项,以2为公比的等比数列,则,故。评注:本题解题的关键是把递推关系式转化为,从而可知数列是等比数列,进而求出数列的通项公式,最后再求出数列的通项公...