广东省汕尾市2024高三冲刺(高考数学)人教版摸底(综合卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分(共8题)第(1)题如图是清代的时钟,以中国传统的一日十二个时辰为表盘显示,其内部结构与普通机械钟表的内部结构相似.内部表盘为圆形,外部环形装饰部分宽度为,此表挂在墙上,最高点距离地面的高度为,最低点距离地面的高度为,以子时为正向上方向,一官员去上早朝时,看到家中时钟的指针指向寅时(指针尖的轨迹为表盘边沿),若4个半时辰后回到家中,此时指针尖到地面的高度约为()A.B.C.D.第(2)题设圆柱的体积为,当其表面积最小时,圆柱的母线长为()A.B.C.D.第(3)题已知平面向量、满足,若,则与的夹角为()A.B.C.D.第(4)题已知集合,集合,则()A.B.C.D.第(5)题执行如图所示的程序框图,当输入的的值为4时,输出的的值为2,则空白判断框中的条件可能为().A.B.C.D.第(6)题设函数f(x)=+lnx,则()A.x=为f(x)的极大值点B.x=为f(x)的极小值点C.x=2为f(x)的极大值点D.x=2为f(x)的极小值点第(7)题已知集合,,则()A.B.C.D.第(8)题已知某生产厂家的年利润(单位:万元)与年产量(单位:万件)的函数关系式为,则使该生产厂家获得最大年利润的年产量为A.13万件B.11万件C.9万件D.7万件二、多选题:本题共3小题,每小题6分,共18分(共3题)第(1)题已如斜率为k的直线l经过抛物线的焦点且与此抛物线交于,两点,,直线l与抛物线交于M,N两点,且M,N两点在y轴的两侧,现有下列四个命题,其中为真命题的是().A.为定值B.为定值C.k的取值范围为D.存在实数k使得第(2)题在长方形ABCD中,,,点E,F分别为边BC和CD上两个动点(含端点),且,设,,则()A.,B.为定值C.的最小值50D.的最大值为第(3)题已知为函数的导函数,若,,则下列结论错误的是()A.在上单调递增B.在上单调递减C.在上有极大值D.在上有极小值三、填空题:本题共3小题,每小题5分,共15分(共3题)第(1)题已知数列满足,则___________.第(2)题设非空集合满足,,则这样的的个数为________.第(3)题在中,,且,若,则________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分(共5题)第(1)题设为数列的前项和,已知是首项为、公差为的等差数列.(1)求的通项公式;(2)令,为数列的前项积,证明:.第(2)题彗星是太阳系大家庭里特殊的一族成员,它们以其明亮的尾巴和美丽的外观而闻名,它的运行轨道和行星轨道很不相同,一般为极扁的椭圆形、双曲线或抛物线.它们可以接近太阳,但在靠近太阳时,由于木星、土星等行星引力的微绕造成了轨道参数的偏差,使得它轨道的离心率由小于1变为大于或等于1,这使得少数彗星会出现“逃逸"现象,终生只能接近太阳一次,永不复返.通过演示,现有一颗彗星已经“逃逸”为以太阳为其中一个焦点离心率为的运行轨道,且慧星距离太阳的最近距离为.(1)求彗星“逃逸”轨道的标准方程;(2)设双曲线的两个顶点分别为,,过,作双曲线的切线,,若点P为双曲线上的动点,过P作双曲线的切线,交实轴于点Q,记直线与交于点M,直线交于点N.求证:M,N,Q三点共线.第(3)题如图所示的几何体是由一个直三棱柱和半个圆柱拼接而成.其中,,点为弧的中点,且四点共面.(1)证明:四点共面;(2)若平面与平面夹角的余弦值为,求长.第(4)题已知抛物线:,焦点为F,为上的一个动点,是在点A处的切线,点P在上且与点A不重合.直线PF与Γ交于B、C两点,且平分直线AB和直线AC的夹角.(1)求的方程(用表示);(2)若从点F发出的光线经过点A反射,证明:反射光线平行于x轴;(3)若点A坐标为,求点P坐标.第(5)题已知中,内角,,所对的边分别为,,,若.(1)求;(2)若,面积为2,求的值.