电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高三数学 复习试题42 空间点、线、面之间的位置关系 理(含解析)VIP免费

高三数学 复习试题42 空间点、线、面之间的位置关系 理(含解析)_第1页
1/10
高三数学 复习试题42 空间点、线、面之间的位置关系 理(含解析)_第2页
2/10
高三数学 复习试题42 空间点、线、面之间的位置关系 理(含解析)_第3页
3/10
42空间点、线、面之间的位置关系导学目标:1.理解空间直线、平面位置关系的含义.2.了解可以作为推理依据的公理和定理.3.能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题.自主梳理1.平面的基本性质公理1:如果一条直线上的________在一个平面内,那么这条直线在此平面内.公理2:过______________的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有________过该点的公共直线.2.直线与直线的位置关系(1)位置关系的分类(2)异面直线所成的角①定义:设a,b是两条异面直线,经过空间中任一点O作直线a′∥a,b′∥b,把a′与b′所成的____________叫做异面直线a,b所成的角(或夹角).②范围:______________.3.直线与平面的位置关系有________、______、________三种情况.4.平面与平面的位置关系有______、______两种情况.5.平行公理平行于______________的两条直线互相平行.6.定理空间中如果两个角的两边分别对应平行,那么这两个角____________.自我检测1.(2011·泉州月考)若直线a与b是异面直线,直线b与c是异面直线,则直线a与c的位置关系是()A.相交B.相交或异面C.平行或异面D.平行、相交或异面2.已知a,b是异面直线,直线c∥直线a,则c与b()A.一定是异面直线B.一定是相交直线C.不可能是平行直线D.不可能是相交直线3.如图所示,点P,Q,R,S分别在正方体的四条棱上,且是所在棱的中点,则直线PQ与RS是异面直线的一个图是()4.(2010·全国Ⅰ)直三棱柱ABC—A1B1C1中,若∠BAC=90°,AB=AC=AA1,则异面直线BA1与AC1所成的角等于()A.30°B.45°C.60°D.90°5.下列命题:①空间不同三点确定一个平面;②有三个公共点的两个平面必重合;③空间两两相交的三条直线确定一个平面;④三角形是平面图形;⑤平行四边形、梯形、四边形都是平面图形;⑥垂直于同一直线的两直线平行;⑦一条直线和两平行线中的一条相交,也必和另一条相交;⑧两组对边相等的四边形是平行四边形.其中正确的命题是________.(填序号)探究点一平面的基本性质例1如图所示,空间四边形ABCD中,E、F、G分别在AB、BC、CD上,且满足AE∶EB=CF∶FB=2∶1,CG∶GD=3∶1,过E、F、G的平面交AD于H,连接EH.(1)求AH∶HD;(2)求证:EH、FG、BD三线共点.变式迁移1如图,E、F、G、H分别是空间四边形AB、BC、CD、DA上的点,且EH与FG相交于点O.求证:B、D、O三点共线.探究点二异面直线所成的角例2(2009·全国Ⅰ)已知三棱柱ABC—A1B1C1的侧棱与底面边长都相等,A1在底面ABC上的射影为BC的中点,则异面直线AB与CC1所成的角的余弦值为()A.B.C.D.变式迁移2(2011·淮南月考)在空间四边形ABCD中,已知AD=1,BC=,且AD⊥BC,对角线BD=,AC=,求AC和BD所成的角.转化与化归思想的应用例(12分)如图所示,在四棱锥P—ABCD中,底面是边长为2的菱形,∠DAB=60°,对角线AC与BD交于点O,PO⊥平面ABCD,PB与平面ABCD所成角为60°.(1)求四棱锥的体积;(2)若E是PB的中点,求异面直线DE与PA所成角的余弦值.多角度审题对(1)只需求出高PO,易得体积;对(2)可利用定义,过E点作PA的平行线,构造三角形再求解.【答题模板】解(1)在四棱锥P—ABCD中, PO⊥平面ABCD,∴∠PBO是PB与平面ABCD所成的角,即∠PBO=60°,[2分]在Rt△AOB中, BO=AB·sin30°=1,又PO⊥OB,∴PO=BO·tan60°=, 底面菱形的面积S=2××2×2×=2,∴四棱锥P—ABCD的体积VP—ABCD=×2×=2.[6分](2)取AB的中点F,连接EF,DF, E为PB中点,∴EF∥PA,∴∠DEF为异面直线DE与PA所成角(或其补角).[8分]在Rt△AOB中,AO=AB·cos30°=,∴在Rt△POA中,PA=,∴EF=.在正三角形ABD和正三角形PDB中,DF=DE=,由余弦定理得cos∠DEF=[10分]===.所以异面直线DE与PA所成角的余弦值为.[12分]【突破思维障碍】求两条异面直线所成角的大小,一般方法是通过平行移动直线,把异面问题转化为共面问题来解决.根据空间等角定理及推论可知,异面直线所成角的大小与顶点位置无关,往往将角的顶点取在其中的一条直线上,特别地,可以取其中一条直线与另一条直线所在平面的交点或异面...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高三数学 复习试题42 空间点、线、面之间的位置关系 理(含解析)

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部