电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学复习 第二章 第八节 函数模型及其综合应用 文试题VIP免费

高考数学复习 第二章 第八节 函数模型及其综合应用 文试题_第1页
1/6
高考数学复习 第二章 第八节 函数模型及其综合应用 文试题_第2页
2/6
高考数学复习 第二章 第八节 函数模型及其综合应用 文试题_第3页
3/6
考点一函数的实际应用问题1.(2014·湖北,16)某项研究表明:在考虑行车安全的情况下,某路段车流量F(单位时间内经过测量点的车辆数,单位:辆/时)与车流速度v(假设车辆以相同速度v行驶,单位:米/秒)、平均车长l(单位:米)的值有关,其公式为F=.(1)如果不限定车型,l=6.05,则最大车流量为______辆/时;(2)如果限定车型,l=5,则最大车流量比(1)中的最大车流量增加________辆/时.解析(1)F=≤=1900,当且仅当v=11时等号成立.(2)F=≤=2000,当且仅当v=10时等号成立,2000-1900=100.答案(1)1900(2)1002.(2013·陕西,14)在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x为________(m).解析设内接矩形另一边长为y,则由相似三角形性质可得=,解得y=40-x,所以面积S=x(40-x)=-x2+40x=-(x-20)2+400(0<x<40),当x=20时,Smax=400.答案203.(2011·福建,16)商家通常依据“乐观系数准则”确定商品销售价格,即根据商品的最低销售限价a,最高销售限价b(b>a)以及实数x(0<x<1)确定实际销售价格c=a+x(b-a).这里x被称为乐观系数.经验表明,最佳乐观系数x恰好使得(c-a)是(b-c)和(b-a)的等比中项.据此可得,最佳乐观系数x的值等于________.解析依题意得x=,(c-a)2=(b-c)(b-a), b-c=(b-a)-(c-a),∴(c-a)2=(b-a)2-(b-a)(c-a),两边同除以(b-a)2,得x2+x-1=0,解得x=. 0<x<1,∴x=.答案4.(2013·重庆,20)某村庄似修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r米,高为h米,体积为V立方米.假设建造成本仅与表面积有关,侧面的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12000π元(π为圆周率).(1)将V表示成r的函数V(r),并求该函数的定义域;(2)讨论函数V(r)的单调性,并确定r和h为何值时该蓄水池的体积最大.解(1)因为蓄水池侧面的总成本为100·2πrh=200πrh元,底面的总成本为160πr2元所以蓄水池的总成本为(200πrh+160πr2)元.又据题意200πrh+160πr2=12000π,所以h=(300-4r2),从而V(r)=πr2h=(300r-4r3).因为r>0,又由h>0可得r<5,故函数V(r)的定义域为(0,5).(2)因为V(r)=(300r-4r3),故V′(r)=(300-12r2).令V′(r)=0,解得r1=5,r2=-5(因r2=-5不在定义域内,舍去).当r∈(0,5)时,V′(r)>0,故V(r)在(0,5)上为增函数;当r∈(5,5)时,V′(r)<0,故V(r)在(5,5)上为减函数.由此可知,V(r)在r=5处取得最大值,此时h=8.即当r=5,h=8时,该蓄水池的体积最大.考点二函数的综合应用问题1.(2014·山东,9)对于函数f(x),若存在常数a≠0,使得x取定义域内的每一个值,都有f(x)=f(2a-x),则称f(x)为准偶函数.下列函数中是准偶函数的是()A.f(x)=B.f(x)=x2C.f(x)=tanxD.f(x)=cos(x+1)解析由题意可得准偶函数的图象关于直线x=a(a≠0)对称,即准偶函数的图象存在不是y轴的对称轴.选项A、C中函数的图象不存在对称轴,选项B中函数的图象的对称轴为y轴,只有选项D中函数的图象存在不是y轴的对称轴.答案D2.(2014·四川,15)以A表示值域为R的函数组成的集合,B表示具有如下性质的函数φ(x)组成的集合:对于函数φ(x),存在一个正数M,使得函数φ(x)的值域包含于区间[-M,M].例如,当φ1(x)=x3,φ2(x)=sinx时,φ1(x)∈A,φ2(x)∈B,现有如下命题:①设函数f(x)的定义域为D,则“f(x)∈A”的充要条件是“∀b∈R,∃a∈D,f(a)=b”;②若函数f(x)∈B,则f(x)有最大值和最小值;③若函数f(x),g(x)的定义域相同,且f(x)∈A,g(x)∈B,则f(x)+g(x)∉B;④若函数f(x)=aln(x+2)+(x>-2,a∈R)有最大值,则f(x)∈B.其中的真命题有________.(写出所有真命题的序号)解析①显然正确;②反例:函数y=的值域为(0,1),存在M=1符合题意,但此函数没有最值;③当f(x)趋于+∞时,无论g(x)在[-M,M]内如何取值,f(x)+g(x)都趋于+∞,所以f(x)+g(x)不可能有最大值,此命题正确;④由于ln(x+2)的值域为R,的值域为,由③知如果a≠0,则函数f(x)=aln(x+2)+的值域为R,无...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高考数学复习 第二章 第八节 函数模型及其综合应用 文试题

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部