换元法解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。换元的方法有:局部换元、三角换元、均值换元等。局部换元又称整体换元,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现。例如解不等式:4x+2x-2≥0,先变形为设2x=t(t>0),而变为熟悉的一元二次不等式求解和指数方程的问题。三角换元,应用于去根号,或者变换为三角形式易求时,主要利用已知代数式中与三角知识中有某点联系进行换元。如求函数y=x+1x的值域时,易发现x∈[0,1],设x=sin2α,α∈[0,2],问题变成了熟悉的求三角函数值域。为什么会想到如此设,其中主要应该是发现值域的联系,又有去根号的需要。如变量x、y适合条件x2+y2=r2(r>0)时,则可作三角代换x=rcosθ、y=rsinθ化为三角问题。均值换元,如遇到x+y=S形式时,设x=S2+t,y=S2-t等等。我们使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量范围的选取,一定要使新变量范围对应于原变量的取值范围,不能缩小也不能扩大。如上几例中的t>0和α∈[0,2]。一、再现性题组:1.y=sinx·cosx+sinx+cosx的最大值是_________。2.设f(x2+1)=loga(4-x4)(a>1),则f(x)的值域是_______________。3.已知数列{an}中,a1=-1,an1·an=an1-an,则数列通项an=___________。4.设实数x、y满足x2+2xy-1=0,则x+y的取值范围是___________。5.方程1313xx=3的解是_______________。6.不等式log2(2x-1)·log2(2x1-2)〈2的解集是_______________。用心爱心专心【简解】1小题:设sinx+cosx=t∈[-2,2],则y=t22+t-12,对称轴t=-1,当t=2,ymax=12+2;2小题:设x2+1=t(t≥1),则f(t)=loga[-(t-1)2+4],所以值域为(-∞,loga4];3小题:已知变形为11an-1an=-1,设bn=1an,则b1=-1,bn=-1+(n-1)(-1)=-n,所以an=-1n;4小题:设x+y=k,则x2-2kx+1=0,△=4k2-4≥0,所以k≥1或k≤-1;5小题:设3x=y,则3y2+2y-1=0,解得y=13,所以x=-1;6小题:设log2(2x-1)=y,则y(y+1)<2,解得-2