第二讲二次函数综合问题二次函数是中学代数的基本内容之一,它既简单又具有丰富的内涵和外延.作为最基本的初等函数,可以以它为素材来研究函数的单调性、奇偶性、最值等性质,还可建立起函数、方程、不等式之间的有机联系;作为抛物线,可以联系其它平面曲线讨论相互之间关系.这些纵横联系,使得围绕二次函数可以编制出层出不穷、灵活多变的数学问题.同时,有关二次函数的内容又与近、现代数学发展紧密联系,是学生进入高校继续深造的重要知识基础.因此,从这个意义上说,有关二次函数的问题在高考中频繁出现,也就不足为奇了.学习二次函数,可以从两个方面入手:一是解析式,二是图像特征.从解析式出发,可以进行纯粹的代数推理,这种代数推理、论证的能力反映出一个人的基本数学素养;从图像特征出发,可以实现数与形的自然结合,这正是中学数学中一种非常重要的思想方法.本文将从这两个方面研究涉及二次函数的一些综合问题.1.代数推理由于二次函数的解析式简捷明了,易于变形(一般式、顶点式、零点式等),所以,在解决二次函数的问题时,常常借助其解析式,通过纯代数推理,进而导出二次函数的有关性质.1.1二次函数的一般式中有三个参数.解题的关键在于:通过三个独立条件“确定”这三个参数.例1已知fxaxbx()2,满足1f()12且214f(),求f()2的取值范围.分析:本题中,所给条件并不足以确定参数的值,但应该注意到:所要求的结论不是的确定值,而是与条件相对应的“取值范围”,因此,我们可以把1f()12和当成两个独立条件,先用和来表示.解:由,可解得:(*)将以上二式代入fxaxbx()2,并整理得,∴.又 214f(),,∴.例2设fxaxbxca20,若f01,f11,f-11,试证明:对于任意11x,有fx54.分析:同上题,可以用来表示.解: ,∴,∴.∴当时,用心爱心专心115号编辑当时,综上,问题获证.1.2利用函数与方程根的关系,写出二次函数的零点式例3设二次函数fxaxbxca20,方程fxx0的两个根xx12,满足0112xxa.当xx01,时,证明xfxx1.分析:在已知方程fxx0两根的情况下,根据函数与方程根的关系,可以写出函数的表达式,从而得到函数的表达式.证明:由题意可知.,∴,∴当xx01,时,.又,∴,综上可知,所给问题获证.例4已知关于x的二次方程x2+2mx+2m+1=0新疆源头学子小屋特级教师王新敞http://www.xjktyg.com/wxc/wxckt@126.comwxckt@126.comhttp://www.xjktyg.com/wxc/王新敞特级教师源头学子小屋新疆(1)若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m的范围新疆源头学子小屋特级教师王新敞http://www.xjktyg.com/wxc/wxckt@126.comwxckt@126.comhttp://www.xjktyg.com/wxc/王新敞特级教师源头学子小屋新疆(2)若方程两根均在区间(0,1)内,求m的范围新疆源头学子小屋特级教师王新敞http://www.xjktyg.com/wxc/wxckt@126.comwxckt@126.comhttp://www.xjktyg.com/wxc/王新敞特级教师源头学子小屋新疆命题意图新疆王新敞特级教师源源源源源源http://www.xjktyg.com/wxc/wxckt@126.comwxckt@126.comhttp://www.xjktyg.com/wxc/源源源源源源特级教师王新敞新疆本题重点考查方程的根的分布问题新疆源头学子小屋特级教师王新敞http://www.xjktyg.com/wxc/wxckt@126.comwxckt@126.comhttp://www.xjktyg.com/wxc/王新敞特级教师源头学子小屋新疆用心爱心专心115号编辑知识依托新疆王新敞特级教师源源源源源源http://www.xjktyg.com/wxc/wxckt@126.comwxckt@126.comhttp://www.xjktyg.com/wxc/源源源源源源特级教师王新敞新疆解答本题的闪光点是熟知方程的根对于二次函数性质所具有的意义新疆源头学子小屋特级教师王新敞http://www.xjktyg.com/wxc/wxckt@126.comwxckt@126.comhttp://www.xjktyg.com/wxc/王新敞特级教师源头学子小屋新疆错解分析新疆王新敞特级教师源源源源源源http://www.xjktyg.com/wxc/wxckt@126.comwxckt@126.comhttp://www.xjktyg.com/wxc/源源源源源源特级教师王新敞新疆用二次函数的性质对方程的根进行限制时,条件不...