第三节合情推理与演绎推理A组基础题组1.正弦函数是奇函数,f(x)=sin(x2+1)是正弦函数,因此f(x)=sin(x2+1)是奇函数,以上推理()A.结论正确B.大前提不正确C.小前提不正确D.全不正确2.由代数式的乘法法则类比推导向量的数量积的运算法则:①“mn=nm”类比得到“a·b=b·a”;②“(m+n)t=mt+nt”类比得到“(a+b)·c=a·c+b·c”;③“(m·n)t=m(n·t)”类比得到“(a·b)·c=a·(b·c)”;④“t≠0,mt=xtm=x”⇒类比得到“p≠0,a·p=x·pa=x”;⇒⑤“|m·n|=|m|·|n|”类比得到“|a·b|=|a|·|b|”;⑥“=”类比得到“=”.以上的式子中,类比得到的结论正确的个数是()A.1B.2C.3D.43.观察(x2)'=2x,(x4)'=4x3,(cosx)'=-sinx,由归纳推理可得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)=()A.f(x)B.-f(x)C.g(x)D.-g(x)4.在平面几何中有如下结论:正三角形ABC的内切圆面积为S1,外接圆面积为S2,则=,推广到空间可以得到类似结论,已知正四面体P-ABC的内切球体积为V1,外接球体积为V2,则=()A.B.C.D.5.如图所示,椭圆中心在坐标原点,F为左焦点,当⊥时,其离心率为,此类椭圆被称为“黄金椭圆”.类比“黄金椭圆”,可推算出“黄金双曲线”的离心率e等于()A.B.C.-1D.+16.(2015陕西文,16,5分)观察下列等式1-=,1-+-=+,1-+-+-=++,……据此规律,第n个等式可为.7.设函数f(x)=(x>0),观察:f1(x)=f(x)=,f2(x)=f[f1(x)]=,f3(x)=f[f2(x)]=,f4(x)=f[f3(x)]=,……根据以上事实,由归纳推理可得:当n∈N*且n≥2时,fn(x)=f[fn-1(x)]=.8.在△ABC中,不等式++≥成立,在凸四边形ABCD中,不等式+++≥成立,在凸五边形ABCDE中,不等式++++≥成立,……,依此类推,在凸n边形A1A2…An中,不等式++…+≥成立.9.我们将具有下列性质的所有函数组成集合M:函数y=f(x)(x∈D),对任意x,y,∈D均满足f≥[f(x)+f(y)],当且仅当x=y时等号成立.(1)若定义在(0,+∞)上的函数f(x)∈M,试比较f(3)+f(5)与2f(4)的大小;(2)设函数g(x)=-x2,求证:g(x)∈M.10.已知O是△ABC内任意一点,连接AO,BO,CO并延长,分别交对边于A',B',C',则++=1,这是一道平面几何题,其证明常采用“面积法”:++=++==1.请运用类比思想猜想,对于空间中的四面体V-BCD,存在什么类似的结论,并用“体积法”证明.B组提升题组11.观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,……,则a10+b10等于()A.28B.76C.123D.19912.如图所示,面积为S的平面凸四边形的第i条边的边长记为ai(i=1,2,3,4),此四边形内任一点P到第i条边的距离为hi(i=1,2,3,4),若====k,则1×h1+2×h2+3×h3+4×h4=.类比以上性质,体积为V的三棱锥的第i个面的面积记为Si(i=1,2,3,4),此三棱锥内任一点Q到第i个面的距离记为Hi(i=1,2,3,4),若====k,则H1+2H2+3H3+4H4的值为()A.B.C.D.13.在平面上,我们如果用一条直线去截正方形的一个角,那么截下一个直角三角形,按图1所标边长,由勾股定理有:c2=a2+b2.如图2,设想正方形换成正方体,把截线换成截面,这时从正方体上截下三条侧棱两两垂直的三棱锥O-LMN,如果用S1,S2,S3表示三个侧面面积,S4表示底面(截面)面积,那么类比得到的结论是.14.仔细观察下面○和●的排列规律:○●○○●○○○●○○○○●○○○○○●○○○○○○●……,若依此规律继续下去,得到一系列的○和●,那么在前120个○和●中,●的个数是.15.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:①sin213°+cos217°-sin13°cos17°;②sin215°+cos215°-sin15°cos15°;③sin218°+cos212°-sin18°cos12°;④sin2(-18°)+cos248°-sin(-18°)cos48°;⑤sin2(-25°)+cos255°-sin(-25°)cos55°.(1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.答案全解全析A组基础题组1.C因为f(x)=sin(x2+1)不是正弦函数,所以小前提不正确.2.B①②正确,③④⑤⑥错误.3.D由已知归纳得,偶函数的导函数为奇函数,又由题意知f(x)是偶函数,所以其导函数应为奇函数,故g(-x)=-g(x),选D.4.C正四面体的内切球与外接球的半径之比为1∶3,故=.5.A设“黄金双曲线”的方程为-=1(a>0,b>0),则B(0,b),F(-c,0),A(a,0).在“黄金双曲线”中,因为⊥,所以·=0.又=(c,b...