电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高三数学一轮复习 三角函数与解三角形 第八讲 正弦定理和余弦定理应用举例-人教版高三全册数学试题VIP免费

高三数学一轮复习 三角函数与解三角形 第八讲 正弦定理和余弦定理应用举例-人教版高三全册数学试题_第1页
1/5
高三数学一轮复习 三角函数与解三角形 第八讲 正弦定理和余弦定理应用举例-人教版高三全册数学试题_第2页
2/5
高三数学一轮复习 三角函数与解三角形 第八讲 正弦定理和余弦定理应用举例-人教版高三全册数学试题_第3页
3/5
第八讲正弦定理和余弦定理应用举例基础自测1.从A处望B处的仰角为α,从B处望A处的俯角为β,则α,β之间的大小关系是________.2.如图所示,已知两座灯塔A和B与海洋观察站C的距离相等,灯塔A在观察站C的北偏东40°,灯塔B在观察站C的南偏东60°,则灯塔A在灯塔B的________方向.3.如图所示,为了测量某障碍物两侧A、B间的距离,给定下列四组数据,不能确定A、B间距离的是________(填序号).①α,a,b;②α,β,a;③a,b,γ;④α,β,b.4.在200m高的山顶上,测得山下一塔的塔顶与塔底的俯角分别是30°、60°,则塔高为________m.5.△ABC中,D为边BC上的一点,BD=33,sinB=,cos∠ADC=,求AD.题型分类深度剖析探究点一与距离有关的问题例1如图,A,B是海面上位于东西方向相距5(3+)海里的两个观测点,现位于A点北偏东45°,B点北偏西60°的D点有一艘轮船发出求救信号,位于B点南偏西60°且与B点相距20海里的C点的救援船立即前往营救,其航行速度为30海里/时,该救援船到达D点需要多长时间?探究点二与高度有关的问题例2如图所示,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个测点C与D,现测得∠BCD=α,∠BDC=β,CD=s,并在点C测得塔顶A的仰角为θ,求塔高AB.1探究点三三角形中的最值问题例3某兴趣小组要测量电视塔AE的高度H(单位:m),示意图如图所示,垂直放置的标杆BC的高度h=4m,仰角∠ABE=α,∠ADE=β.(1)该小组已测得一组α、β的值,算出了tanα=1.24,tanβ=1.20,请据此算出H的值;(2)该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离d(单位:m),使α与β之差较大,可以提高测量精度.若电视塔实际高度为125m,试问d为多少时,α-β最大?课时规范训练八班级姓名1.如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为________.2.如图,设A、B两点在河的两岸,一测量者在A的同侧,在所在的河岸边选定一点C,测出AC的距离为50m,∠ACB=45°,∠CAB=105°后,就可以计算出A、B两点的距离为________m.3.某人向正东方向走xkm后,向右转150°,然后朝新方向走3km,结果他离出发点恰好是km,那么x的值为________.4.一船向正北航行,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°方向,另一灯塔在船的南偏西75°方向,则这只船的速度是________海里/小时.5.某校运动会开幕式上举行升旗仪式,旗杆正好处在坡度为15°的看台的某一列的正前方,从这一列的第一排和最后一排测得2旗杆顶部的仰角分别为60°和30°,第一排和最后一排的距离为10米(如图所示),旗杆底部与第一排在一个水平面上.若国歌长度约为50秒,升旗手应以________米/秒的速度匀速升旗.6.如图,A、B、C、D都在同一个与水平面垂直的平面内,B、D为两岛上的两座灯塔的塔顶.测量船于水面A处测得B点和D点的仰角分别为75°、30°,于水面C处测得B点和D点的仰角均为60°,AC=0.1km.试探究图中B、D间距离与另外哪两点间距离相等,然后求B、D的距离(计算结果精确到0.01km,≈1.414,≈2.449).7.如图所示,甲船以每小时30海里的速度向正北方向航行,乙船按固定方向匀速直线航行.当甲船位于A1处时,乙船位于甲船的南偏西75°方向的B1处,此时两船相距20海里.当甲船航行20分钟到达A2处时,乙船航行到甲船的南偏西60°方向的B2处,此时两船相距10海里.问乙船每小时航行多少海里?8.如图,某市拟在长为8km的道路OP的一侧修建一条运动赛道,赛道的前一部分为曲线段OSM,该曲线段为函数y=Asinωx(A>0,ω>0),x∈[0,4]的图象,且图象的最高点为S(3,2);赛道的后一部分为折线段MNP,为保证参赛运动员的安全,限定∠MNP=120°.(1)求A,ω的值和M,P两点间的距离;(2)应如何设计,才能使折线段赛道MNP最长?3第八讲正弦定理和余弦定理应用举例基础自测1.α=β2.北偏西10°3.①4.5.解由cos∠ADC=>0知B<,由已知得cosB=,sin∠ADC=,从而sin∠BAD=sin(∠ADC-B)=sin∠ADCcosB-cos∠ADCsinB=×-×=.由正弦定理得,=,所以AD===25.题型分类深度剖析例1解由题意知AB=5(3+)...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高三数学一轮复习 三角函数与解三角形 第八讲 正弦定理和余弦定理应用举例-人教版高三全册数学试题

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部