第二节点、线、面的位置关系一、选择题1..如图,正方体1111ABCDABCD的棱线长为1,线段11BD有两个动点E,F,且22EF,则下列结论中错误的是(A)ACBE(B)//EFABCD平面(C)三棱锥ABEF的体积为定值(D)异面直线,AEBF所成的角为定值2.给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是A.①和②B.②和③C.③和④D.②和④【解析】选D.3.在三棱柱111ABCABC中,各棱长相等,侧掕垂直于底面,点D是侧面11BBCC的中心,则AD与平面11BBCC所成角的大小是()A.30B.45C.60D.90答案:C【解析】取BC的中点E,则AE面11BBCC,AEDE,因此AD与平面11BBCC所成角即为ADE,设ABa,则32AEa,2aDE,即有0tan3,60ADEADE.4.设,是两个不同的平面,l是一条直线,以下命题正确的是()A.若,l,则lB.若//,//l,则lC.若,//l,则lD.若//,l,则l5.C【命题意图】此题主要考查立体几何的线面、面面的位置关系,通过对平行和垂直的考查,充分调动了立体几何中的基本元素关系.【解析】对于A、B、D均可能出现//l,而对于C是正确的.用心爱心专心6.设m,n是平面内的两条不同直线,1l,2l是平面内的两条相交直线,则//的一个充分而不必要条件是A.m//且l//B.m//l且n//l2C.m//且n//D.m//且n//l2【答案】:B[解析]若1212//,//,.,.mlnlmn,则可得//.若//则存在1221,//,//mlnl7.已知正四棱柱1111ABCDABCD中,12AAAB,E为1AA中点,则异面直线BE与1CD所成的角的余弦值为A.1010B.15C.31010D.35解:令1AB则12AA,连1AB1CD∥1AB异面直线BE与1CD所成的角即1AB与BE所成的角。在1ABE中由余弦定理易得1310cos10ABE。故选C8.若正四棱柱1111ABCDABCD的底面边长为1,1AB与底面ABCD成60°角,则11AC到底面ABCD的距离为()A.33B.1C.2D.3【答案】D【解析】本题主要考查正四棱柱的概念、直线与平面所成的角以及直线与平面的距离等概念.(第4题解答图)属于基础知识、基本运算的考查.依题意,160BAB,如图,11tan603BB,故选D.9.已知二面角l的大小为050,P为空间中任意一点,则过点P且与平面和用心爱心专心平面所成的角都是025的直线的条数为()A.2B.3C.4D.5答案B10.在正四棱柱1111ABCDABCD中,顶点1B到对角线1BD和到平面11ABCD的距离分别为h和d,则下列命题中正确的是A.若侧棱的长小于底面的边长,则hd的取值范围为(0,1)B.若侧棱的长小于底面的边长,则hd的取值范围为223(,)23C.若侧棱的长大于底面的边长,则hd的取值范围为23(,2)3D.若侧棱的长大于底面的边长,则hd的取值范围为23(,)3C11.如图,在三棱柱ABC-A1B1C1中,∠ACB=900,∠ACC1=600,∠BCC1=450,侧棱CC1的长为1,则该三棱柱的高等于A.21B.22C.23D.33A12.正方体ABCD—1A1B1C1D的棱上到异面直线AB,C1C的距离相等的点的个数为(C)A.2B.3C.4D.513.平面六面体ABCD-1A1B1C1D中,既与AB共面也与1CC共面的棱的条数为【C】A.3B.4C.5D.614.如图,正四面体ABCD的顶点A,B,C分别在两两垂直的三条射线Ox,Oy,Oz上,则在下列命题中,错误的为A.OABC是正三棱锥B.直线OB∥平面ACD用心爱心专心yxzOABCDC.直线AD与OB所成的角是45D.二面角DOBA为45答案B15.如图,已知六棱锥PABCDEF的底面是正六边形,,2PAABCPAAB平面,则下列结论正确的是A.PBADB.平面PABPBC平面C.直线BC∥平面PAED.PDABC直线与平面所成的角为45答案D二、填空题16.如图,在长方形ABCD中,2AB,1BC,E为DC的中点,F为线段EC(端点除外)上一动点.现将AFD沿AF折起,使平面ABD平面ABC.在平面ABD内过点D作DKAB,K为垂足.设AKt,则t的取值范围是.答案:1,12【解析】此题的破解可采用二个极...