2015-2016学年福建师大附中高一(上)期末数学试卷(实验班)一、选择题:(每小题5分,共60分,在每小题给出的四个选项中,只有一项符合要求)1.若直线l的斜率为,则直线l的倾斜角为()A.115°B.120°C.135°D.150°2.已知棱长都相等的正三棱锥内接于一个球,某学生画出四个过球心的平面截球与正三棱锥所得的图形,如图所示,则()A.以上四个图形都是正确的B.只有(2)(4)是正确的C.只有(4)是错误的D.只有(1)(2)是正确的3.△ABC的斜二测直观图△A′B′C′如图所示,则△ABC的面积为()A.1B.2C.D.4.一束光线自点P(﹣1,1,1)发出,被yOz平面反射到达点Q(﹣6,3,3)被吸收,那么光线所走的距离是()A.B.C.D.5.若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的母线与底面所称的角为()A.30°B.45°C.60°D.75°6.下列命题正确的是()A.若直线l不平行于平面α,则α内不存在直线平行于直线lB.若直线l不垂直于平面α,则α内不存在直线垂直于直线lC.若平面α不平行于平面β,则β内不存在直线平行于平面αD.若平面α不垂直于平面β,则β内不存在直线垂直于平面α7.已知BC是圆x2+y2=25的动弦,且|BC|=6,则BC的中点的轨迹方程是()A.x2+y2=1B.x2+y2=9C.x2+y2=16D.x2+y2=48.若直线l1:(2m+1)x﹣4y+3m=0与直线l2:x+(m+5)y﹣3m=0平行,则m的值为()A.B.C.D.﹣19.直线l:y=kx﹣1与曲线C:x2+y2﹣4x+3=0有且仅有2个公共点,则实数k的取值范围是()A.B.C.D.10.已知圆C:(x﹣3)2+(y﹣4)2=1和两点A(﹣m,0),B(m,0)(m>0),若圆C上存在点P,使得∠APB=90°,则m的最大值为()A.7B.6C.5D.411.过M(1,3)引圆x2+y2=2的切线,切点分别为A、B,则△AMB的面积为()A.B.4C.D.12.若两条异面直线所成的角为90°,则称这对异面直线为“理想异面直线对”,在连接正方体各顶点的所有直线中,“理想异面直线对”的对数为()A.24B.48C.72D.78二、填空题:(本大题共6小题,每小题5分,共30分,把答案填在答卷上)13.一个几何体的三视图如图所示,其中主视图和左视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为.14.函数f(x)=的最小值为.15.设点P、Q分别在直线3x﹣y+5=0和3x﹣y﹣13=0上运动,线段PQ中点为M(x0,y0),且x0+y0>4,则的取值范围为.16.如右图,三棱锥A﹣BCD的顶点B、C、D在平面α内,CA=AB=BC=CD=DB=2,AD=,若将该三棱锥以BC为轴转动,到点A落到平面α内为止,则A、D两点所经过的路程之和是.17.若直线m被两平行线l1:x+y=0与l2:x+y+=0所截得的线段的长为2,则m的倾斜角可以是①15°②45°③60°④105°⑤120°⑥165°其中正确答案的序号是.(写出所有正确答案的序号)18.如图所示,正方体ABCD﹣A′B′C′D′的棱长为1,E、F分别是棱AA′,CC′的中点,过直线EF的平面分别与棱BB′、DD′交于M、N,设BM=x,x∈[0,1],给出以下四个命题:①平面MENF⊥平面BDD′B′;②当且仅当x=时,四边形MENF的面积最小;③四边形MENF周长l=f(x),x∈0,1]是单调函数;④四棱锥C′﹣MENF的体积v=h(x)为常函数;以上命题中真命题的序号为.三、解答题:(本大题共5小题,满分60分)19.已知△ABC中,BC边上的高所在的直线方程为x﹣2y+1=0,∠A的角平分线所在的直线方程为y=0,点C的坐标为(1,2).(Ⅰ)求点A和点B的坐标;(Ⅱ)又过点C作直线l与x轴、y轴的正半轴分别交于点M,N,求△MON的面积最小值及此时直线l的方程.20.如图(1),在正方形SG1G2G3中,E、F分别是G1G2、G2G3的中点,D是EF的中点,现沿SE、SF及EF把这个正方形折成一个几何体如图(2),使G1、G2、G3三点重合于点G.证明:(1)G在平面SEF上的射影为△SEF的垂心;(2)求二面角G﹣SE﹣F的正弦值.21.一艘船在航行过程中发现前方的河道上有一座圆拱桥.在正常水位时,拱桥最高点距水面8m,拱桥内水面宽32m,船只在水面以上部分高6.5m,船顶部宽8m,故通行无阻,如图所示.(1)建立适当的平面直角坐标系,求正常水位时圆弧所在的圆的方程;(2)近日水位暴涨了2m,船已经不能通...