2015年安徽省名校联盟高考数学一模试卷(理科)一、选择题(共10小题,每小题5分,满分50分,只有一个选项符号题目要求)1.已知集合A={x|x2﹣2x<0},B={x|>0},则A∩(∁RB)=()A.{x|0<x<1}B.{x|1≤x<2}C.{x|0<x≤1}D.{x|1<x<2}2.已知i是虚数单位,则复数等于()A.﹣+iB.﹣+iC.﹣iD.﹣i3.某校在暑假组织社会实践活动,将8名高一年级学生,平均分配甲、乙两家公司,其中两名英语成绩优秀学生不能分给同一个公司;另三名电脑特长学生也不能分给同一个公司,则不同的分配方案有()A.36种B.38种C.108种D.114种4.执行如图所示的程序框图,若输入的x的值为2,则输出的x的值为()A.3B.126C.127D.1285.某几何体的三视图如图所示,该几何体的体积是()A.B.C.D.6.在数列{an}中,a1=3,an+1an+2=2an+1+2an(n∈N+),则该数列的前2015项的和是()A.7049B.7052C.14098D.141017.已知双曲线﹣=1的一个焦点与抛物线y2=4x的焦点重合,且双曲线的渐近线方程为y=±x,则该双曲线的方程为()A.﹣=1B.﹣y2=1C.x2﹣=1D.﹣=18.在正方体8个顶点中任选3个顶点连成三角形,则所得的三角形是等腰直角三角形的概率为()A.B.C.D.9.设定义域为(0,+∞)的单调函数f(x),对任意的x∈(0,+∞),都有f[f(x)﹣lnx]=e+1,若x0是方程f(x)﹣f′(x)=e的一个解,则x0可能存在的区间是()A.(0,1)B.(e﹣1,1)C.(0,e﹣1)D.(1,e)10.如图,已知双曲线﹣=1(a>0,b>0)的左右焦点分别为F1,F2,|F1F2|=4,P是双曲线右支上一点,直线PF2交y轴于点A,△AF1P的内切圆切边PF1于点Q,若|PQ|=1,则双曲线的渐近线方程为()A.y=±xB.y=±3xC.y=±xD.y=±x二、填空题(共5小题,每小题5分,满分25分)11.已知α为钝角,sin(+α)=,则sin(﹣α)=.12.直线l:(t为参数)与圆C:(θ为参数)相交所得的弦长的取值范围是.13.设等差数列{an}的前n项和为Sn,若﹣1<a3<1,0<a6<3,则S9的取值范围是.14.若正数m、n满足mn﹣m﹣n=3,则点(m,0)到直线x﹣y+n=0的距离最小值是.15.如图所示,正方体ABCD﹣A′B′C′D′的棱长为1,E、F分别是棱AA′,CC′的中点,过直线EF的平面分别与棱BB′、DD′交于M、N,设BM=x,x∈[0,1],给出以下四个命题:①平面MENF⊥平面BDD′B′;②当且仅当x=时,四边形MENF的面积最小;③四边形MENF周长l=f(x),x∈0,1]是单调函数;④四棱锥C′﹣MENF的体积v=h(x)为常函数;以上命题中真命题的序号为.三、解答题(共6小题,满分75分)16.△ABC中,角A,B,C所对的边之长依次为a,b,c,且cosA=,5(a2+b2﹣c2)=3ab.(Ⅰ)求cos2C和角B的值;(Ⅱ)若a﹣c=﹣1,求△ABC的面积.17.某校举办学生综合素质大赛,对该校学生进行综合素质测试,学校对测试成绩(10分制)大于或等于7.5的学生颁发荣誉证书,现从A和B两班中各随机抽5名学生进行抽查,其成绩记录如下:A777.599.5B6x8.58.5y由于表格被污损,数据x,y看不清,统计人员只记得x<y,且A和B两班被抽查的5名学生成绩的平均值相等,方差也相等.(Ⅰ)若从B班被抽查的5名学生中任抽取2名学生,求被抽取2学生成绩都颁发了荣誉证书的概率;(Ⅱ)从被抽查的10名任取3名,X表示抽取的学生中获得荣誉证书的人数,求X的期望.18.如图,椭圆C1:的离心率为,x轴被曲线C2:y=x2﹣b截得的线段长等于椭圆C1的短轴长.C2与y轴的交点为M,过点M的两条互相垂直的直线l1,l2分别交抛物线于A、B两点,交椭圆于D、E两点,(Ⅰ)求C1、C2的方程;(Ⅱ)记△MAB,△MDE的面积分别为S1、S2,若,求直线AB的方程.19.如图,四面体ABCD中,平面ABC⊥平面BCD,AC=AB,CB=CD,∠DCB=120°,点E在BD上,且CE=DE.(Ⅰ)求证:AB⊥CE;(Ⅱ)若AC=CE,求二面角A﹣CD﹣B的余弦值.20.已知数列{an}满足a1=,an+1=an+(n∈N*).证明:对一切n∈N*,有(Ⅰ)<;(Ⅱ)0<an<1.21.已知函数f(x)=lnx﹣a(1﹣),a∈R.(Ⅰ)求f(x)的单调区间;(Ⅱ)若f(x)的最小值为0.(i)求实数a的值;(ii)已知数列{an}满足:a1=1,an+1=f(an)+2,记[x]表示不大于x...