专题50平面内两条直线位置关系的常考题型考纲要求:①在平面直角坐标系中,结合具体图形掌握确定直线位置的几何要素.②理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.③能根据两条直线的斜率判定这两条直线平行或垂直.④掌握确定直线的几何要素,掌握直线方程的三种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.⑤能用解方程组的方法求两相交直线的交点坐标.⑥掌握两点间的距离公式、点到直线的距离公式,会求两平行直线间的距离.基础知识回顾:1.两条直线的位置关系(1)平行:对于两条不重合的直线l1,l2,其斜率分别为k1,k2,有l1∥l2⇔k1=k2,特别地,当直线l1,l2的斜率都不存在时,l1与l2的关系为l1∥l2.(2)垂直:如果两条直线l1,l2的斜率都存在,且分别为k1,k2,则有l1⊥l2⇔k1k2=-1,特别地,若直线l1:x=a,直线l2:y=b,则l1与l2的关系为l1⊥l2.2.两条直线的交点坐标一般地,将两条直线的方程联立,得方程组若方程组有惟一解,则两条直线相交,此解就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平行.3.距离公式(1)点到直线的距离:点P0(x0,y0)到直线l:Ax+By+C=0的距离d=.(2)两条平行直线间的距离:两条平行直线l1:Ax+By+C1=0与l2:Ax+By+C2=0(C1≠C2)间的距离d=.4.过两直线交点的直线系方程若已知直线l1:A1x+B1y+C1=0与l2:A2x+B2y+C2=0相交,则方程A1x+B1y+C1+λ(A2x+B2y+C2)=0(其中λ∈R,这条直线可以是l1,但不能是l2)表示过l1和l2交点的直线系方程.应用举例:类型一两条直线平行、重合或相交【例1】【2018届四川省成都市第七中学高三上半期】若直线与直线平行,则()A.B.2C.D.0【答案】A【例2】【2017届广东省广州市高三4月综合测试(二)】已知三条直线,,不能构成三角形,则实数的取值集合为()A.B.C.D.【答案】D【解析】因为三条直线,,不能构成三角形,所以直线与,平行,或者直线过与的交点,直线与,分别平行时,,或,直线过与的交点时,,所以实数的取值集合为,故选D.点评:由直线的一般式直接判断两条直线是否平行时,可直接应用结论:若=≠,则直线A1x+B1y+C1=0与A2x+B2y+C2=0平行,这是一个很实用的结论,但要注意分母不能为零.类型二两条直线垂直【例1】【2018届云南省师范大学附属中学高三月考卷(二)】已知直线的倾斜角为,直线经过,两点,且直线与垂直,则实数的值为()A.-2B.-3C.-4D.-5【答案】D【解析】 ,∴,故选D.【例2】“m=3”是“直线l1:2(m+1)x+(m-3)y+7-5m=0与直线l2:(m-3)x+2y-5=0垂直”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析:由l1⊥l2,得2(m+1)(m-3)+2(m-3)=0,解得m=3或m=-2.∴m=3是l1⊥l2的充分不必要条件.故选A.点评:判定两直线垂直的方法:(1)判定两直线的斜率是否存在,若存在,可先化成斜截式,若k1·k2=-1,则两直线垂直;若一条直线的斜率不存在,另一条直线的斜率为0,则两直线也垂直.(2)直接用以下方法,可避免对斜率是否存在进行讨论.设直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,l1⊥l2⇔A1A2+B1B2=0.(3)当直线方程中存在字母参数时,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况.同时还要注意x,y的系数不能同时为零这一隐含条件.类型三对称问题【例1】与直线关于定点对称的直线方程是()A.B.C.D.【答案】C【例2】已知三角形的一个顶点A(4,-1),它的两条角平分线所在直线的方程分别为l1:x-y-1=0和l2:x-1=0,则BC边所在直线的方程为____________.点评:(1)关于中心对称问题的处理方法:①若点M(x1,y1)及N(x,y)关于P(a,b)对称,则由中点坐标公式得②求直线关于点的对称直线的方程,其主要方法是:在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点坐标,再由两点式求出直线方程,或者求出一个对称点,再利用两直线平行,由点斜式得到所求直线方程,当然,斜率必须存在.(2)关于轴对称问题的处理方法:①点关于直线的对称.若两点P1(x1,y1)与P2(x2,y2)关于...